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Abstract—Domain generalization aims to learn invariance
across multiple source domains, thereby enhancing generalization
against out-of-distribution data. While gradient or representation
matching algorithms have achieved remarkable success in do-
main generalization, these methods generally lack generalization
guarantees or depend on strong assumptions, leaving a gap
in understanding the underlying mechanism of distribution
matching. In this work, we formulate domain generalization
from a novel probabilistic perspective, ensuring robustness while
avoiding overly conservative solutions. Through comprehensive
information-theoretic analysis, we provide key insights into the
roles of gradient and representation matching in promoting
generalization. Our results reveal the complementary relationship
between these two components, indicating that existing works
focusing solely on either gradient or representation alignment are
insufficient to solve the domain generalization problem. In light
of these theoretical findings, we introduce IDM to simultaneously
align the inter-domain gradients and representations. Integrated
with the proposed PDM method for complex distribution match-
ing, IDM achieves superior performance over various baseline
methods.

Index Terms—Information Theory, Domain Generalization,
Generalization Analysis, Distribution Matching.

I. INTRODUCTION

D ISTRIBUTION shifts are prevalent in various real-world
learning contexts, often leading to machine learning

systems overfitting domain-specific correlations that may neg-
atively impact performance when facing out-of-distribution
(OOD) data [1]–[4]. Domain generalization (DG) is then
introduced to address this challenge: By assuming the training
data constitutes multiple domains that share some invariant
underlying correlations, DG algorithms then attempt to learn
this invariance so that domain-specific variations do not affect
the model’s performance. To this end, various DG approaches
have been proposed, including invariant representation learn-
ing [5], [6], adversarial learning [7], [8], causal inference [9],
[10], gradient manipulation [11]–[13], and robust optimization
[14]–[16].

DG is typically formulated as an average-case [17], [18]
or worst-case [9], [14] optimization problem, which however
either lacks robustness against OOD data [9], [19] or leads to
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overly conservative solutions [16]. In this paper, we introduce
a novel probabilistic formulation that ensures robustness by
minimizing the gap between source and target-domain pop-
ulation risks with high probability. Our comprehensive gen-
eralization analysis then reveals that the input-output mutual
information and the representation space covariate shift are
pivotal in controlling this domain-level generalization gap,
which could be achieved by aligning inter-domain gradients
and representations, respectively.

Although distribution matching techniques are already well-
explored in existing DG literature, these methods generally
lack generalization guarantees or depend on strong assump-
tions, e.g. controllable invariant features [11], quadratic bowl
loss landscape [13] or Lipschitz-continuous gradients [20].
In contrast, we derive instructive generalization bounds by
leveraging a relaxed i.i.d domain assumption [16], which is
easily satisfied in practice. Our results indicate that combining
gradient and representation matching effectively minimizes
the domain-level generalization gap. Crucially, we reveal the
complementary nature of these two components, highlighting
that neither of them alone is sufficient to solve the DG
problem.

In light of these theoretical findings, we propose inter-
domain distribution matching (IDM) for high-probability
DG by simultaneously aligning gradients and representations
across source domains. Furthermore, we point out the lim-
itations of traditional distribution alignment techniques, es-
pecially for high-dimensional and complex probability distri-
butions. To circumvent these issues, we further propose per-
sample distribution matching (PDM) by slicing and aligning
individual sorted data points. The main framework of theoreti-
cal results in this paper is summarized in Figure 1. IDM jointly
working with PDM achieves superior performance on the
Colored MNIST dataset [9] and the DomainBed benchmark
[21]. Our primary contributions can be summarized as follows:
• Probabilistic formulation: We introduce a novel prob-

abilistic perspective for evaluating DG algorithms, fo-
cusing on their ability to minimize the domain-level
generalization gap with high probability. Our approach
leverages milder assumptions about the domains and
enables generalization analysis with information-theoretic
tools.

• Information-theoretic insights: Our analysis compre-
hensively elucidates the role of gradient and representa-
tion matching in promoting domain generalization. Most
importantly, we reveal the complementary relationship
between these two components, indicating that neither
of them alone is sufficient to solve the DG problem.
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Fig. 1. The main framework of our theoretical results. We reveal that
the input-output mutual information and the representation space covariate
shift are pivotal in controlling the domain generalization error, and can be
minimized by aligning inter-domain gradients and representations respectively.

• Novel algorithms: We propose IDM for high-probability
DG by simultaneously aligning inter-domain gradients
and representations, and PDM for complex distribution
matching by slicing and aligning individual sorted data
points. IDM jointly working with PDM achieves superior
performance over various baseline methods.

II. PROBLEM SETTING

We denote random variables by capitalized letters (X), their
realizations by lower-case letters (x), and the corresponding
spaces by calligraphic letters (X ). Let Z = X × Y be the
instance space of interest, where X and Y are the input space
and the label space, respectively. Let W be the hypothesis
space, each w ∈ W characterizes a predictor fw: X 7→ Y ,
comprised of an encoder fφ: X 7→ R and a classifier fψ:
R 7→ Y with the assist of the representation space R.

Following [16], we assume that there exists a distribution
ν over the space of possible domains D, where each domain
d ∈ D corresponds to a specific data-generating distribution
µd = PZ|D=d. The unconditional data distribution is µ =

PZ . The source Ds = {Di}mi=1 and target Dt = {D′k}m
′

k=1

domains are both random variables sampled from ν. Let S =
{Si}mi=1 denote the training dataset, with each subset Si =
{Zij}nj=1 containing n i.i.d data sampled from µDi . The task
is to design algorithm A : Dm 7→ W , taking Ds as the input
(with proxy S) and providing possibly randomized hypothesis
W = A(Ds). Given the loss function ` : Y × Y 7→ R+, the
general performance of some hypothesis w ∈ W in average is
evaluated by the global population risk:

L(w) = ED∼ν [LD(w)] = EZ∼µ[`(fw(X), Y )],

where Ld(w) = EZ∼µd [`(fw(X), Y )] is the domain-level
population risk. Since ν is unknown, only the source and
target-domain population risks are tractable in practice:

Ls(w) =
1

m

m∑
i=1

LDi(w), Lt(w) =
1

m′

m′∑
k=1

LD′k(w).

Main Assumptions. We list the assumptions considered in our
theoretical analysis as follows:

Assumption 1. Dt is independent of Ds.

Assumption 2. `(·, ·) is bounded in [0,M ].

Assumption 3. `(fw(X), Y ) is σ-subGaussian w.r.t Z ∼ µ
for any w ∈ W .

Assumption 4. `(·, ·) is symmetric and satisfies the triangle
inequality, i.e. for any y1, y2, y3 ∈ Y , `(y1, y2) = `(y2, y1)
and `(y1, y2) ≤ `(y1, y3) + `(y3, y2).

Assumption 5. `(fw(X), Y ) is β-Lipschitz w.r.t a metric c on
Z for any w ∈ W , i.e. for any z1, z2 ∈ Z , |`(fw(x1), y1) −
`(fw(x2), y2)| ≤ βc(z1, z2).

Sub-Gaussianity (Assumption 3) is one of the most common
assumptions for information-theoretic generalization analysis
[22]–[25], and is also naturally satisfied when using Gibbs
algorithms [26]. Notably, Assumption 2 is a strengthened ver-
sion of Assumption 3, since any [0,M ]-bounded random vari-
able is always M/2-subGaussian. Lipschitzness (Assumption
5) is a crucial prerequisite for stability analysis and has also
been utilized in deriving Wasserstein distance generalization
bounds [27]–[32]. Assumption 4 is fulfilled when distance
functions, such as mean absolute error (MAE) and 0-1 loss,
are used as loss functions. This assumption has also been
examined in previous studies [33]–[35].

High-Probability DG. The classical empirical risk min-
imization (ERM) technique, which minimizes the average-
case risk: minw L(w), is found ineffective in achieving in-
variance across different domains [9], [19]. To overcome this
limitation, recent works [12], [13], [15], [36]–[38] have cast
DG as a worst-case optimization problem: minw maxd Ld(w).
However, this approach is generally impractical without strong
assumptions made in the literature [16], [39], e.g. linearity of
the underlying causal mechanism [9], [15], [36], or strictly
separable spurious and invariant features [38]. On the con-
trary, we propose the following high-probability objective by
leveraging the mild Assumption 1:

Problem 6. (High-Probability DG)

min
A

E[Ls(W )], s.t. P{|Lt(W )− Ls(W )| ≥ ε} ≤ δ.

In domain generalization, we are interested in the target-
domain performance of a model trained with source-domain
data, so an appropriate formulation of the generalization ability
would be the gap between source-domain Ls(W ) and target-
domain Lt(W ) population risks. This gap also measures
the robustness of the model against distribution shifts. The
probability is taken over both the sampled domains (Ds and
Dt) and the learning algorithm (W ). Notably, our Assumption
1 is significantly weaker than the previously adopted i.i.d
domain assumption [16] by allowing correlations between
source (or target) domains, and should be trivially satisfied
in practice.

Here, we mainly focus on the domain-level generalization
error between Ls(w) and Lt(w), while in practice the standard
generalization error between the source-domain empirical risk
L′(w) (defined in Theorem 22) and Ls(w) may also arise due
to the effect of finite training samples. This is also an important
research direction that has been well-studied in the literature,
with various works establishing generalization bounds based
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on input-output or conditional mutual information metrics
under the supersample framework [22], [40], [41]. However,
it is beyond the scope of solving Problem 6 and thus is not
considered in our main results. We further explore the effect
of finite samples in Section VII-E.

III. GENERALIZATION ANALYSIS

The primary goal of DG is to tackle the distribution shift
problem, raised by the variation in the data-generating distribu-
tion µd for different domains d. When using the KL divergence
as a measure of distance between the data distributions of
distinct domains, this inconsistency can be quantified by the
mutual information I(Z;D) between the data pair Z and the
domain identifier D. Specifically, I(Z;D) = 0 if and only if Z
and D are independent, i.e. the data distributions µd are all the
same for any d ∈ D. This metric can be further decomposed
into:

I(Z;D) (distribution shift) = I(X;D) (covariate shift)
+ I(Y ;D|X) (concept shift). (1)

While D is binary to distinguish training and test samples in
[42], [43], we extend this concept to any discrete or continuous
space, provided that each d ∈ D corresponds to a distinct data
distribution µd. The right hand side (RHS) characterizes the
changes in the marginal input distribution PX (covariate shift)
as well as the predictive distribution PY |X (concept shift). We
first show that the achievable level of average-case risk L(w)
is constrained by the degree of concept shift as following:

Proposition 7. For any predictor QY |X , we have

EX,D[KL(PY |X,D ‖QY |X)] ≥ I(Y ;D|X).

When ` represents the cross-entropy loss, the population
risk of predictor Q on domain d can be represented as
the KL divergence EX|D=d[KL(PY |X,D=d ‖QY |X)], provided
that H(Y |X,D) = 0 (i.e. the label can be entirely inferred
from X and D). Therefore, the LHS expectation could be
understood as the global population risk L(w). When dt =
D \ ds and m,m′ < ∞, this implies that any model fitting
well in source domains (Ls(w) ≈ 0) will suffer from strictly
positive risks in target domains (Lt(w) ≥ Ω(I(Y ;D|X)))
once concept shift is induced, which violates the goal of DG.
This observation verifies the failure of ERM on the Colored
MNIST dataset [9] which introduces a high concept shift,
emphasizing that any algorithm must balance training and test
risks (i.e. minimize |Lt(W )−Ls(W )| in Problem 6) to achieve
domain generalization.

A. Decomposing the Generalization Gap

We further demonstrate that by connecting source and
target-domain population risks via the average-case risk
L(W ), one can decompose the constraint of Problem 6 into
source and target-domain generalization gaps. To be specific,
since the predictor W is trained on the source domains Ds,
it is commonly seen that W achieves lower population risks
on Ds than on average, i.e. Ls(W ) ≤ L(W ). Moreover, since
the sampling process of target domains is independent of the

hypothesis, the target-domain population risk Lt(W ) is an
unbiased estimate of L(W ). Combining these two observa-
tions, it is natural to observe that Ls(W ) ≤ L(W ) ≈ Lt(W ),
implying that the average-case risk L(W ) acts as a natural
bridge between the two. For any constant λ ∈ (0, 1), we can
prove that:

P{|Ls(W )− Lt(W )| ≥ ε} ≤ P{|Ls(W )− L(W )| ≥ λε}
+ P{|Lt(W )− L(W )| ≥ (1− λ)ε}.

While the first event heavily correlates with the hypothesis
W , the second event is instead hypothesis-independent. This
observation inspires us to explore both hypothesis-based and
hypothesis-independent bounds to address source and target-
domain generalization errors, respectively.

B. Source-domain Generalization

We first provide a sufficient condition for source-domain
generalization. Our results are motivated by recent advance-
ments in generalization analysis within the information-
theoretic framework [44], [45]. Specialized to our problem,
we quantify the changes in the hypothesis once the source
domains are observed through the input-output mutual infor-
mation I(W ;Di):

Theorem 8. If Assumption 2 holds, then

P{|Ls(W )− L(W )| ≥ ε} ≤ M

mε
√

2

m∑
i=1

√
I(W ;Di)

+
1

ε
EW,D|LD(W )− L(W )|,

where D ∼ ν is independent of W .

Intuitively, extracting correlations between X and Y that are
invariant across source domains enhances the generalization
ability of machine learning models. The mutual information
I(W ;Di) approaches zero when the correlations that a model
learns from a specific source domain Di are also present in
other source domains. This does not imply that the model
learns nothing from Ds: by further assuming the independence
of these domains, the summation of I(W ;Di) can be relaxed
to I(W ;Ds), which measures the actual amount of informa-
tion learned by the model. By minimizing each I(W ;Di) and
Ls(W ) simultaneously, learning algorithms are encouraged to
discard domain-specific correlations while preserving invariant
ones and thus achieve high generalization performance.

Interestingly, the second term at the RHS of Theorem 8 is
highly relevant to the target-domain generalization gap, so we
will postpone related analysis to Section III-C.

Next, we demonstrate that the minimization of I(W ;Di)
can be achieved by matching the conditional distributions of
inter-domain gradients. To see this, we assume that W is
optimized by some noisy and iterative learning algorithms, e.g.
stochastic gradient descent (SGD). Then the rule of updating
W at step t can be formulated as:

Wt = Wt−1 − ηt
m∑
i=1

g(Wt−1, B
i
t),
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where g(w,Bit) =
1

m|Bit|
∑
z∈Bit

∇w`(fw(x), y),

providing W0 as the initial guess. Here, ηt is the learning rate,
and Bit is the batch of data points randomly drawn from source
domain Di to compute the gradient. Suppose that algorithm
A finishes in T steps, we then have:

Theorem 9. Let Gt = −ηt
∑m
i=1 g(Wt−1, B

i
t), then

I(WT ;Di) ≤
T∑
t=1

I(Gt;Di|Wt−1).

Although our analysis is derived from the update rule
of SGD, the same conclusion applies to a variety of iter-
ative and noisy learning algorithms, e.g. SGLD and Ada-
Grad. Theorem 9 suggests that minimizing I(Gt;Di|Wt−1)
in each update penalizes I(WT ;Di) and thus leads to source-
domain generalization. Notably, this conditional mutual in-
formation I(Gt;Di|Wt−1) can be rewritten as the KL diver-
gence EDi,Wt−1

[KL(PGt|Di,Wt−1
‖PGt|Wt−1

)], which directly
motivates matching the marginal and conditional gradient
distributions of each source domain. This can also be done
by minimizing the difference between each pair of the source-
domain gradient distributions {PGt|Di,Wt−1

}mi=1, i.e. inter-
domain gradients. Therefore:

Gradient matching promotes source-domain generaliza-
tion when EW,D|LD(W )− L(W )| is minimized.

Intuitively, gradient alignment enforces the model to learn
common correlations shared across source domains, thus pre-
venting overfitting to spurious features and promoting invari-
ance [12], [13].

We further present an alternative approach by assuming
Lipschitzness instead of sub-Gaussianity, which usually leads
to tighter bounds beyond information-theoretic measures:

Theorem 10. If `(fw(X), Y ) is β′-Lipschitz w.r.t w, then

|EW,Ds [Ls(W )]− EW [L(W )]|

≤ β′

m

m∑
i=1

EDi [W(PW |Di , PW )].

Besides the elegant symmetry compared to KL divergence
metrics, Wasserstein distance bounds are generally considered
to be tighter improvements over information-theoretic bounds.
To see this, we assume that the adopted metric c is discrete,
which leads to the following reductions:

EDi [W(PW |Di , PW )] = EDi [TV(PW |Di , PW )]

≤ EDi

√
1

2
KL(PW |Di ‖PW )

≤
√

1

2
I(W ;Di), (2)

where TV is the total variation. These reductions confirm
that the RHS of Theorem 8 also upper bounds other alter-
native measures of domain differences i.e. total variation and
Wasserstein distance. This observation encourages us to di-
rectly penalize the mutual information I(W ;Di), which is not

only more stable for optimization [35], [46] but also enables
simultaneous minimization of these alternative metrics.

C. Target-domain Generalization

We then investigate sufficient conditions for target-domain
generalization. Since the training process is independent of
the target domains, the predictor could be considered as some
constant hypothesis w ∈ W . It is straightforward to verify that
EDt [Lt(w)] = L(w) due to the identical domain distribution
ν. We then establish the following bound for the target-domain
generalization gap:

Theorem 11. If Assumption 3 holds, then for any fixed w ∈
W ,

P{|Lt(w)− L(w)| ≥ ε} ≤ σ

ε

√
2I(Z;D).

The result above can be interpreted from two perspectives.
Firstly, evaluating the predictor w on randomly sampled target
domains reflects its ability to generalize on average, since
Lt(w) is an unbiased estimate of L(w). Secondly, knowledge
about L(w) can be used to predict the ability of w to generalize
on unseen domains, which complements Theorem 8 in solving
Problem 6.

In Theorem 11, the probability of generalization is mainly
controlled by the extent of distribution shift I(Z;D). No-
tably, I(Z;D) is an intrinsic property of the data collection
procedure, and thus cannot be penalized from the perspec-
tive of learning algorithms. Fortunately, the encoder φ can
be considered as part of the data preprocessing procedure,
enabling learning algorithms to minimize the representation
space distribution shift. Under the same conditions as Theorem
11, we have that for any fixed classifier ψ:

P{|Lt(ψ)− L(ψ)| ≥ ε} ≤ σ

ε

√
2I(R, Y ;D),

where L(ψ) = ED[LD(ψ)], Lt(ψ) = 1
m′

∑m′

k=1 LD′k(ψ),
Ld(ψ) = ER,Y [`(fψ(R), Y )] and PR,Y is the joint distribution
by pushing forward PZ via the encoder as R = fφ(X). The
representation space distribution shift can then be decomposed
into:

I(R, Y ;D) (distribution shift) = I(R;D) (covariate shift)
+ I(Y ;D|R) (concept shift).

This motivates us to simultaneously minimize the representa-
tion space covariate shift and concept shift to achieve target-
domain generalization. We further demonstrate that bounding
the covariate shift I(R;D) solely is sufficient for target-
domain generalization with Assumption 4:

Theorem 12. If Assumptions 2 and 4 hold, then for any fixed
classifier ψ,

P{Lt(ψ)− L(ψ) ≥ ε} ≤ M

ε
√

2

√
I(R;D) +

2

ε
L∗,

where L∗ = minf∗:R7→Y [L(f∗)] and L(f) =
ER,Y [`(f(R), Y )].

Similarly, we further refine these target-domain generaliza-
tion bounds by incorporating the more stringent Assumption
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5 in Section VII. Theorem 12 indicates that target-domain
generalization is mainly controlled by the amount of covariate
shift. Notably, the optimal classifier f∗ is chosen from the
entire space of functions mapping from R to Y , so L∗ could
be regarded as the minimum population risk that the optimal
classifier can achieve. In the noiseless case where there exists
a ground-truth labeling function h∗ such that Y = h∗(R),
we will have L∗ = 0. Moreover, the representation space
covariate shift I(R;D) is equivalent to the KL divergence
ED[KL(PR|D ‖PR)], which directly motivates matching the
representation distributions across different domains:

Representation matching promotes target-domain gener-
alization when the best achievable population risk L∗ is
low.

A byproduct of the proof of Theorem 12 is an upper bound
on the expected absolute target-domain generalization error:

EW,D|LD(W )− L(W )| ≤ M√
2

√
I(R;D) + 2L∗.

This result complements the source-domain generalization
bound in Theorem 8, confirming that penalizing I(W ;Di) and
I(R;D) simultaneously is sufficient to minimize the source-
domain generalization gap.

While minimizing I(R;D) guarantees target-domain gen-
eralization, this operation requires matching target-domain
representations since the classifier Ψ and target domains
Dt must be independent to apply Theorem 12. However,
knowledge about target-domain samples is not available and
we only have source-domain samples during the entire train-
ing process. To this end, many existing DG algorithms are
matching the source-domain representations as an alternative,
utilizing I(Ri;Di) for each Di ∈ Ds as a proxy to penalize
I(R;D). The following proposition verifies the feasibility of
this approach:

Proposition 13. Let W = A(Ds). Assume that PR,D �
PRi,Di and PRi,Di � PR,D, we then have

SKL(PR,D ‖PRi,Di) ≤ log(B)
√

2I(W ;Di),

where SKL(P ‖Q) = KL(P ‖Q) + KL(Q ‖P ) and B =

supr∈R,d∈D

{
max

(
PR,D(r,d)
PRi,Di (r,d) ,

PRi,Di (r,d)

PR,D(r,d)

)}
.

Interestingly, the discrepancy between the target-domain
joint distribution of PR,D and its source-domain counterpart
PRi,Di can be upper bounded by the input-output mutual infor-
mation I(W ;Di). This verifies that by letting I(W ;Di)→ 0,
we will have PR,D ≈ PRi,Di , so one may use I(Ri;Di)
as a proxy to penalize I(R;D) and achieve target-domain
generalization.

While our analysis does not necessitate the independence
condition between source domains or target domains, such a
condition is also naturally satisfied in most learning scenarios
and can lead to tighter generalization bounds. Specifically,
Theorem 11 and 12 can be further tightened by a factor of
1
m′ when target domains are i.i.d. We refer the readers to the
Appendix for the proof of these results.

IV. INTER-DOMAIN DISTRIBUTION MATCHING

Motivated by our theoretical analysis in Section III, we
propose inter-domain distribution matching (IDM) to achieve
high-probability DG (Problem 6). Recall that the average-case
risk L(W ) serves as a natural bridge to connect Ls(W ) and
Lt(W ), the regularization in Problem 6 directly indicates an
objective for optimization by combining the high-probability
concentration bounds in Theorem 8 and 11. Specifically, for
any λ ∈ (0, 1), if Assumption 1 holds, we have:

P{|Lt(W )− Ls(W )| ≥ ε} ≤ M

mελ
√

2

m∑
i=1

√
I(W ;Di)

+
1

ελ(1− λ)

(
M√

2

√
I(R;D) + 2L∗

)
. (3)

This observation directly motivates aligning inter-domain dis-
tributions of the gradients and representations simultaneously.
While the idea of distribution matching is not new, we are
the first to explore the complementary relationship between
gradient and representation matching:

Gradient and representation matching together minimize
P{|Lt(W )− Ls(W )| ≥ ε} in Problem 6.

Specifically, source-domain generalization requires the mini-
mization of the target-domain generalization gap (Theorem 8),
and target-domain generalization requires the minimization of
the input-output mutual information (Proposition 13). There-
fore, existing works focusing exclusively on either gradient
or representation alignment are insufficient to fully address
the domain-level generalization gap. To our best knowledge,
this is the first exploration in the literature where gradient
and representation matching are combined to yield a sufficient
solution for the DG problem.

A. Per-sample Distribution Matching

While various distribution matching methods have been
proposed in the literature, these techniques are generally either
ineffective or insufficient for high-dimensional and complex
distributions. Typically, learning algorithms have no knowl-
edge about the underlying distribution of either the representa-
tion or the gradient, and the only available way is to align them
across batched data points. We first provide an impossibility
theorem for high-dimensional distribution matching in the
cases of limited number of samples:

Theorem 14. Let n and b be the dimension and the number
of data points respectively. Then
• If n > b+1, then given an arbitrarily group of data points
s = {xi}bi=1, there exists infinite domains d1, d2, · · · that
satisfies P (S = s|D = d1) = P (S = s|D = d2) = · · · .

• If n > 2b + 1, then for any two groups of sampled data
points s1 = {x1

i }bi=1 and s2 = {x2
i }bi=1, there exists

infinite domains d1, d2, · · · such that for any j ∈ [1,∞),
P (S = s1|D = dj) = P (S = s2|D = dj).

Intuitively speaking, Theorem 14 states that different do-
mains are theoretically indistinguishable with finite samples
if n � b. In real-world scenarios, the dimensionality of the
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feature or the gradient easily exceeds that of the batch size,
making algorithms that aim to align the entire distribution (e.g.
CORAL [5] and MMD [6]) generally ineffective since distri-
bution alignment is basically impossible given such few data
points. This observation is also verified by [13] that aligning
the entire covariance matrix achieves no better performance
than aligning the diagonal elements only. Furthermore, prior
distribution alignment techniques mainly focus on aligning the
directions [12], [20], [47] or low-order moments [5], [11], [13],
which are insufficient for complex probability distributions.
For example, while the standard Gaussian distribution N(0, 1)
and the uniform distribution U(−

√
3,
√

3) share the same
expectation and variance, they are fundamentally different to
one another. To address these issues, we propose the per-
sample distribution matching (PDM) technique that aligns
distributions in a per-dimension manner, by minimizing an
upper bound of the KL divergence between probability density
estimators.

Let {x1
i }bi=1 and {x2

i }bi=1 be two groups of 1-dimensional
data points drawn from probability distributions P and Q
respectively. Let pi denote the density of Gaussian distribution
with expectation x1

i and variance σ2, then the kernel density
estimator P̄ for P can be written as p̄(x) = 1

b

∑
i pi(x)

(respectively for qi, Q̄ and q̄). The following theorem suggests
a computable upper bound for the KL divergence (Wasserstein
distance) between probability density estimators:

Theorem 15. Let f be a bijection: [1, b]↔ [1, b] and Pi be the
probability measure defined by pi (respectively for Qi and qi),
then KL(P̄ ‖ Q̄) ≤ 1

b

∑b
i=1 KL(Pi ‖Qf(i)), and W(P̄ , Q̄) ≤

1
b

∑b
i=1 W(Pi, Qf(i)).

Hence, distribution matching can be achieved by minimizing
the KL divergence or Wasserstein distances between point
Gaussian densities, which can be achieved by aligning indi-
vidual data points. The following theorem suggests an optimal
bijection for choosing the order of alignment:

Theorem 16. Suppose that {x1
i }bi=1 and {x2

i }bi=1 are both
sorted in the same order, then f(j) = j is the minimizer of
both

∑b
i=1 KL(Pi ‖Qf(i)) and

∑b
i=1 W(Pi, Qf(i)).

To summarize, the procedure of PDM is to slice the
data points into separate dimensions, sort the data points
in ascending (or descending) order for each dimension, and
then match the sorted data points across different source
domains. PDM improves over previous distribution matching
techniques by simultaneously capturing multiple orders of
moments, avoiding ineffective high-dimensional distribution
matching, as well as enabling straightforward implementation
and efficient computation.

The pseudo-code for PDM is provided in Algorithm 1,
where we adopted the moving average trick from [13] to en-
large the equivalent batch size for accurate probability density
estimation. This does not invalidate our analysis in Theorem
14, as the maximum equivalent batch size (b/(1− γ) ≈ 640)
remains significantly smaller than the dimensionality of the
representation (2048 for ResNet-50 in DomainBed) or the
gradient (2048 × c, the number of classes) and satisfies
d > 2b + 1. Therefore, it is still impossible to distinguish

different distributions as indicated by Theorem 14. However,
this moving average technique indeed helps to improve the
empirical performance, as shown by our ablation studies.
In Algorithm 1, the moving averages Xi

ma are initialized
with 0, and the input data points are represented as matrices
Xi ∈ Rb×d, where b and d denote the batch size and
dimensionality respectively. Each row of X then corresponds
to an individual data point.

Algorithm 1 PDM for distribution matching.
1: Input: Data matrices {Xi}mi=1, moving average γ.
2: Output: Penalty of distribution matching.
3: for i from 1 to m do
4: Sort the elements of Xi in each column in ascending

order.
5: Calculate moving average Xi

ma = γXi
ma + (1− γ)Xi.

6: end for
7: Calculate the mean of data points across domains: Xma =

1
m

∑m
i=1X

i
ma.

8: Output: LPDM = 1
mdb

∑m
i=1‖Xma −Xi

ma‖2F .

B. Algorithm Design

Combining the methods discussed above, we finally propose
the IDM algorithm for high-probability DG by simultaneously
aligning inter-domain gradients and representations. Recall
that Problem 6 incorporates an additional regularization based
on ERM, we adopt the following Lagrange multipliers to
optimize the IDM objective:

LIDM = LE + λ1LG + λ2LR

= Ls(W ) + λ1LPDM({Gi}mi=1) + λ2LPDM({Ri}mi=1). (4)

Here LE is the risk of ERM, LG and LR denote the penalty
of distribution matching for the gradients and representations
respectively, implemented with the proposed PDM method. To
cooperate representation alignment which regards the classifier
ψ as the true predictor and also for memory and time concerns,
we only apply gradient alignment for the classifier ψ as in [13].
Furthermore, λ1 and λ2 should be adaptively chosen according
to the extent of covariate and concept shifts respectively: On
the one hand, representation matching is closely connected
to covariate shift, as it aims to minimize the representation
space covariate shift I(R;D), which is induced by the input
space covariate shift I(X;D). According to the Markov chain
D → X → R, the representations are naturally aligned when
I(X;D) = 0. On the other hand, concept shift I(Y ;D|X)
implies the existence of domain-specific correlations between
X and Y , i.e. the predictive distribution PY |X is different
for each domain. This will cause models to overfit these
source domain-specific features and thus generalize poorly.
When I(Y ;D|X) = 0, gradient alignment is not required
since the distribution shift can solely be addressed by aligning
the representations. In general, gradient and representation
matching reduces the impact of concept shift and covariate
shift respectively to achieve domain generalization, and λ1, λ2

should scale with the amount of the two shifts respectively.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3531136

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on February 02,2025 at 11:54:18 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INFORMATION THEORY 7

0 100 200 300 400 500
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Pe

na
lty

Regularization
IRM
V-Rex

IGA
Fishr

IDM

0.2

0.4

0.6

0.8

Accuracy

Accuracy
Train 80%
Train 90%
Test 10%

Fig. 2. Dynamics of different DG regularization penalties (dotted line)
and prediction accuracies of each domain (dashed line) on Colored MNIST,
optimized by the IDM objective.

The pseudo-code for IDM is presented in Algorithm 2 for
completeness.

Algorithm 2 IDM for high-probability DG.
1: Input: Initial model W , training dataset S, hyper-

parameters λ1, λ2, t1, t2, γ1, γ2.
2: for t from 1 to #steps do
3: for i from 1 to m do
4: Randomly sample a batch Bit = (Xi

t , Y
i
t ) from Si of

size b.
5: Compute individual representations: (Rit)j =

fΦ

(
(Xi

t)j
)
, for j ∈ [1, b].

6: Compute individual risks: (Lit)j =
`
(
fΨ

(
(Rit)j

)
, (Y it )j

)
, for j ∈ [1, b].

7: Compute individual gradients: (Git)j = ∇Ψ(Lit)j , for
j ∈ [1, b].

8: end for
9: Compute total empirical risk: LIDM =

1
mn

∑m
i=1

∑n
j=1(Lit)j .

10: if t ≥ t1 then
11: Compute gradient alignment penalty: LG =

LPDM({Git}mi=1, γ1).
12: LIDM ← LIDM + λ1LG.
13: end if
14: if t ≥ t2 then
15: Compute representation alignment penalty: LR =

LPDM({Rit}mi=1, γ2).
16: LIDM ← LIDM + λ2LR.
17: end if
18: Back-propagate gradients ∇WLIDM and update the

model W .
19: end for

V. RELATED WORKS

Domain Generalization. In the literature, various ap-
proaches have been proposed by incorporating external domain
information to achieve OOD generalization. Most recent works
achieve invariance by employing additional regularization cri-
teria based on ERM. These methods differ in the choice of
the statistics used to match across source domains and can be
categorized by the corresponding objective of 1) gradient, 2)
representation, and 3) predictor, as follows:
• Invariant Gradients: Gradient alignment enforces batched

data points from different domains to cooperate and

TABLE I
THE COLORED MNIST TASK.

Method Train Acc Test Acc Gray Acc

ERM 86.4 ± 0.2 14.0 ± 0.7 71.0 ± 0.7
IRM 71.0 ± 0.5 65.6 ± 1.8 66.1 ± 0.2
V-REx 71.7 ± 1.5 67.2 ± 1.5 68.6 ± 2.2
IGA 68.9 ± 3.0 67.7 ± 2.9 67.5 ± 2.7
Fishr 69.6 ± 0.9 71.2 ± 1.1 70.2 ± 0.7

IDM 70.2 ± 1.4 70.6 ± 0.9 70.5 ± 0.7

promotes OOD generalization by finding loss minima
shared across source domains. Specifically, IGA [11]
aligns the empirical expectations, Fish [12] maximizes
the dot-product of inter-domain gradients, AND-mask
[20] and SAND-mask [47] only update weights when the
gradients share the same direction, and Fishr [13] matches
the gradient variance. These gradient-based objectives are
generally restricted to aligning the directions or low-order
moments, resulting in substantial information loss in
more granular statistics. Besides, these works either lack
generalization guarantees or rely on strong assumptions
including the existence of invariant and controllable fea-
tures (IGA), the shape of loss landscape around the local
minima (Fishr), Lipschitz continuous gradients and co-
diagonalizable Hessian matrix (AND-mask). In contrast,
our analysis successfully connects gradient alignment
and source-domain generalization by leveraging the mild
assumption of identical domain distributions.

• Invariant Representations: Extracting domain-invariant
features has been extensively studied to solve both DG
and domain adaptation (DA) problems. DANN [7] and
CDANN [8] align inter-domain representations via ad-
versarial learning, MMD [6] uses kernel methods for
distribution alignment, and CORAL [5] matches low-
order moments of the representations. Still, these methods
are insufficient for complex probability distributions [48],
ineffective for high-dimensional distributions (Theorem
14), and incapable of addressing the concept shift. Be-
sides, the viability of minimizing the representation shift
I(R;D) through the source-domain proxy I(Ri;Di) re-
mains questionable without gradient matching (Proposi-
tion 7). Our analysis sheds light on understanding how
representation alignment enhances target-domain general-
ization by minimizing the variance of target-domain risks.

• Invariant Predictors: A recent line of works proposes to
explore the connection between invariance and causal-
ity. IRM [9] and subsequent works [37], [38] learn an
invariant classifier that is simultaneously optimal for
all source domains. However, later works have shown
that IRM may fail on non-linear data and lead to sub-
optimal predictors [36], [49]. Parallel works include: V-
REx [15] which minimizes the variance of source-domain
risks, GroupDRO [14] which minimizes the worst-domain
training risk, and QRM [16] which optimizes a quantile
of the risk distribution. As shown in the next section, IDM
also promotes domain-invariant predictors and ensures
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optimality across different source domains.
Information-theoretic Generalization Analysis. The uti-

lization of information-theoretic tools to acquire generalization
guarantees for randomized learning algorithms has gained
significant attention after the seminal works of [22], [50].
These works differ in the choice of information-theoretic
metrics and can be categorized as follows:
• Mutual Information: The works of [22], [50] successfully

connect generalization error and the mutual information
between the hypothesis and the training dataset. This
approach is also shown to be highly effective in char-
acterizing the learning dynamics of noisy and iterative
algorithms such as SGD [23]–[25]. However, this line of
research mainly focuses on the traditional in-distribution
learning settings, with minimal investigations into OOD
generalization. To the best of our knowledge, we are the
first to provide a comprehensive analysis of the domain-
level generalization error. Moreover, our proof techniques
shed new light on upper bounding the expectation of
the absolute generalization gap, which is intrinsically
more difficult and may be of independent interest in new
deriving high-probability generalization bounds.

• KL Divergence: As an alternative approach, [51] explores
the possibility of establishing generalization bounds with
KL divergence between average joint distributions, which
demonstrates potential in deriving tighter bounds. [52]
shows that the generalization error of Gibbs algorithms
can be exactly characterized by the symmetrized KL in-
formation. [35] investigates the generalization of domain
adaptation through the KL divergence between source and
target-domain data distributions. Although Proposition 13
share certain similarities in the usage of SKL metrics,
their problem settings are fundamentally different to ours
and thus cannot be directly applied to acquire the in-
sights provided by Proposition 13, that gradient matching
complements representation matching in target-domain
generalization.

• Wasserstein Distance: Recently, the Wasserstein distance
has been found as a tighter improvement over KL diver-
gence to quantify distances between probability distri-
butions. To this end, multiple works [30], [51] establish
generalization bounds via Wasserstein distance metrics by
adopting a more stringent Lipschitz continuity assump-
tion. While Theorem 10 shares certain similarities with
these results, we successfully extend Wasserstein distance
analysis to characterize the source-domain generalization
error and motivate the minimization of I(W ;Di).

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed IDM algorithm on
the Colored MNIST task [9] and the DomainBed benchmark
[21] to demonstrate its capability of generalizing against
various types of distribution shifts1. Detailed settings of these
experiments and further empirical results including ablation
studies are reported in Appendix C-A - D-C.

1The source code is available at https://github.com/Yuxin-Dong/IDM.

A. Colored MNIST

The Colored MNIST task [9] is carefully designed to create
high correlations between image colors and the true labels,
leading to spurious features that possess superior predictive
power (90% and 80% accuracy) over the actual digits (75%).
However, this correlation is reversed in the target domain
(10%), causing any learning algorithm that solely minimizes
training errors to overfit the color information and fail when
testing. As such, Colored MNIST is an ideal task to evaluate
the capability of learning algorithms to achieve invariance
across source domains.

Following the settings of [9], we adopt a two-stage training
technique, where the penalty strength λ is set low initially
and higher afterward. We visualize the learning dynamics
of relevant DG penalties, including IRM, V-Rex, IGA, and
Fishr, using the IDM objective for optimization in Figure
2. The penalty values are normalized for better clarity. This
visualization confirms Theorem 8 that IDM promotes source-
domain generalization by minimizing the gap between training
risks, thus ensuring the optimality of the predictor across
different source domains. Moreover, it verifies the superiority
of PDM by showing that penalizing the IDM objective solely
is sufficient to minimize other types of invariance penalties.

Table I presents the performance comparison on Colored
MNIST across 10 independent runs. Following the hyper-
parameter tuning technique as [9], we select the best model
by maxw min(Ls(w), Lt(w)). As can be seen, IDM achieves
the best trade-off between source and target-domain accura-
cies (70.2%), and near-optimal gray-scale accuracy (70.5%)
compared to the Oracle predictor (71.0%, ERM trained with
gray-scale images).

B. DomainBed Benchmark

The DomainBed Benchmark [21] comprises multiple syn-
thetic and real-world datasets for assessing the performance
of both DA and DG algorithms. To ensure a fair comparison,
DomainBed limits the number of attempts for hyper-parameter
tuning to 20, and the results are averaged over 3 independent
trials. Therefore, DomainBed serves as a rigorous and com-
prehensive benchmark to evaluate different DG strategies. We
compare the performance of our method with 20 baselines in
total for a thorough evaluation. Table II summarizes the results
using target-domain model selection, which is a common
choice for validation purposes [13], [15] and highly motivated
by our discussion in Appendix D-C.

As can be seen, IDM achieves top-1 accuracy (72.0%)
on CMNIST which is competitive with the Oracle (75.0%),
outperforming all previous distribution alignment techniques
by aligning the directions (AND-mask, SAND-mask, Fish)
or low-order moments (Fishr). This verifies the superiority
of the proposed PDM method as well as the complementary
relationship between gradient and representation alignment.
On the contrary, algorithms that only align the representa-
tions (CORAL, MMD, DANN, CDANN) are incapable of
addressing the concept shift, thus performing poorly on CM-
NIST. Moreover, IDM achieves the highest accuracy among
all distribution matching algorithms on RMNIST / PACS,
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TABLE II
THE DOMAINBED BENCHMARK. WE FORMAT BEST, SECOND BEST AND WORSE THAN ERM RESULTS.

Algorithm Accuracy (↑) Ranking (↓)
CMNIST RMNIST VLCS PACS OffHome TerraInc DomNet Avg Mean Median Worst

ERM 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7 12.3 11 20
IRM 67.7 ± 1.2 97.5 ± 0.2 76.9 ± 0.6 84.5 ± 1.1 63.0 ± 2.7 50.5 ± 0.7 28.0 ± 5.1 66.9 18.3 20 22
GroupDRO 61.1 ± 0.9 97.9 ± 0.1 77.4 ± 0.5 87.1 ± 0.1 66.2 ± 0.6 52.4 ± 0.1 33.4 ± 0.3 67.9 11.7 10 19
Mixup 58.4 ± 0.2 98.0 ± 0.1 78.1 ± 0.3 86.8 ± 0.3 68.0 ± 0.2 54.4 ± 0.3 39.6 ± 0.1 69.0 7.3 6 15
MLDG 58.2 ± 0.4 97.8 ± 0.1 77.5 ± 0.1 86.8 ± 0.4 66.6 ± 0.3 52.0 ± 0.1 41.6 ± 0.1 68.7 12.6 13 18
CORAL 58.6 ± 0.5 98.0 ± 0.0 77.7 ± 0.2 87.1 ± 0.5 68.4 ± 0.2 52.8 ± 0.2 41.8 ± 0.1 69.2 6.4 5 14
MMD 63.3 ± 1.3 98.0 ± 0.1 77.9 ± 0.1 87.2 ± 0.1 66.2 ± 0.3 52.0 ± 0.4 23.5 ± 9.4 66.9 10.0 10 22
DANN 57.0 ± 1.0 97.9 ± 0.1 79.7 ± 0.5 85.2 ± 0.2 65.3 ± 0.8 50.6 ± 0.4 38.3 ± 0.1 67.7 15.0 18 22
CDANN 59.5 ± 2.0 97.9 ± 0.0 79.9 ± 0.2 85.8 ± 0.8 65.3 ± 0.5 50.8 ± 0.6 38.5 ± 0.2 68.2 12.4 14 18
MTL 57.6 ± 0.3 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 66.5 ± 0.4 52.2 ± 0.4 40.8 ± 0.1 68.5 11.7 10 21
SagNet 58.2 ± 0.3 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 67.5 ± 0.2 52.5 ± 0.4 40.8 ± 0.2 68.7 11.3 9 17
ARM 63.2 ± 0.7 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 64.8 ± 0.4 51.2 ± 0.5 36.0 ± 0.2 68.1 13.0 16 21
VREx 67.0 ± 1.3 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 65.7 ± 0.3 51.4 ± 0.5 30.1 ± 3.7 68.2 10.6 8 20
RSC 58.5 ± 0.5 97.6 ± 0.1 77.8 ± 0.6 86.2 ± 0.5 66.5 ± 0.6 52.1 ± 0.2 38.9 ± 0.6 68.2 13.4 13 19
AND-mask 58.6 ± 0.4 97.5 ± 0.0 76.4 ± 0.4 86.4 ± 0.4 66.1 ± 0.2 49.8 ± 0.4 37.9 ± 0.6 67.5 17.0 16 22
SAND-mask 62.3 ± 1.0 97.4 ± 0.1 76.2 ± 0.5 85.9 ± 0.4 65.9 ± 0.5 50.2 ± 0.1 32.2 ± 0.6 67.2 17.9 19 22
Fish 61.8 ± 0.8 97.9 ± 0.1 77.8 ± 0.6 85.8 ± 0.6 66.0 ± 2.9 50.8 ± 0.4 43.4 ± 0.3 69.1 11.3 11 18
Fishr 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 68.2 ± 0.2 53.6 ± 0.4 41.8 ± 0.2 70.8 5.4 3 16
SelfReg 58.0 ± 0.7 98.1 ± 0.7 78.2 ± 0.1 87.7 ± 0.1 68.1 ± 0.3 52.8 ± 0.9 43.1 ± 0.1 69.4 5.0 3 19
CausIRLCORAL 58.4 ± 0.3 98.0 ± 0.1 78.2 ± 0.1 87.6 ± 0.1 67.7 ± 0.2 53.4 ± 0.4 42.1 ± 0.1 69.4 5.0 3 15
CausIRLMMD 63.7 ± 0.8 97.9 ± 0.1 78.1 ± 0.1 86.6 ± 0.7 65.2 ± 0.6 52.2 ± 0.3 40.6 ± 0.2 69.2 10.4 10 20

IDM 72.0 ± 1.0 98.0 ± 0.1 78.1 ± 0.4 87.6 ± 0.3 68.3 ± 0.2 52.8 ± 0.5 41.8 ± 0.2 71.2 3.3 3 6

competitive performances to the best algorithm on RMNIST
(98.0% v.s. 98.1%), PACS (87.6% v.s. 87.7%), OfficeHome
(68.3% v.s. 68.4%), the highest average accuracy (71.2%)
and best rankings (mean, median and worst rankings on
7 datasets) among all baseline methods. IDM also enables
efficient computation, such that the running-time overhead is
only 5% compared to ERM on the largest DomainNet dataset,
and negligible for other smaller datasets. Notably, IDM is the
only algorithm that consistently achieves top rankings (Top 6
of 22), while any other method failed to outperform most of
the competitors on at least 1 dataset.

While the overall performance is promising, we notice that
IDM is not very effective on TerraIncognita. There are several
possible reasons: Firstly, the number of hyper-parameters
in IDM exceeds most competing methods, which is critical
to model selection since the number of tuning attempts is
limited in DomainBed. Recall that the value of λ1 and λ2

should adapt to the amount of covariate and concept shifts
respectively: While CMNIST manually induces high concept
shift, covariate shift is instead dominant in other datasets,
raising extra challenges for hyper-parameter tuning. Secondly,
representation space distribution alignment may not always
help since Lt(w) ≤ L(w) is possible by the randomized nature
of target domains. These factors together result in sub-optimal
hyper-parameter selection results.

VII. FURTHER DISCUSSIONS

A. Information Bottleneck for Target-domain Generalization

Alternatively, one can also decompose the representation
space distribution shift from an anti-causal perspective:

I(R, Y ;D) (distribution shift) = I(Y ;D) (label shift)
+ I(R;D|Y ) (concept shift).

While label shift I(Y ;D) is an intrinsic property of the data
distribution and cannot be optimized by learning algorithms,
the anti-causal concept shift I(R;D|Y ) is closely connected to
the information bottleneck (IB) principle: Notice the Markov
chain (D,Y ) − X − R, we then have that by applying the
data-processing inequality,

I(R;D|Y ) = I(R;D,Y )− I(R;Y ) ≤ I(R;X)− I(R;Y ).

Recall that the spirit of IB is to minimize I(X;R) while
maximizing I(R;Y ), this target can be achieved by solely
penalizing I(R;X|Y ) [53]–[55]. Therefore, when there is
no label imbalance issues (i.e. I(Y ;D) → 0), the anti-
causal concept shift I(R;D|Y ) can be minimized by the IB
principle:

Information bottleneck promotes target-domain general-
ization if I(Y ;D)→ 0.

Notably, our analysis facilitates previous works [36] utilizing
IB to enhance the performance of OOD generalization. While
the analysis of [36] is primarily restricted to linear models, our
results apply to any encoder-classifier type network. Similar
to representation matching, directly minimizing I(R;X|Y )
requires knowledge about target-domain samples which is
inaccessible in practice. Following Proposition 13, we provide
the following result on the feasibility of utilizing the empirical
IB I(Ri;Xi|Yi) as a proxy to optimize I(R;X|Y ), where
Zi = (Xi, Yi) is a training sample of domain Di.

Proposition 17. Let W = A(Ds). Assume that PR,Z �
PRi,Zi and PRi,Zi � PR,Z , then

SKL(PR,Z ‖PRi,Zi) ≤ log(B)
√

2I(W ;Di).

where B = supr∈R,z∈Z

{
max

(
PR,Z(r,z)
PRi,Zi (r,z)

,
PRi,Zi (r,z)

PR,Z(r,z)

)}
.
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Proof. The proof follows the same development as Proposition
13.

This result indicates that with the assistance of gradient
matching (i.e. minimizing I(W ;Di)), one can achieve target-
domain generalization by optimizing the source-domain IB
objective I(Ri;Xi|Yi).

B. Leveraging the Independence Assumption

In the analysis above, we only assume that the target
domains are independent of the source domains (Assumption
1), while the source (or target) domains are not necessarily
independent of each other. This assumption is much weaker
than the i.i.d domains assumption adopted in [16] by allowing
correlations between source domains, e.g. sampling from a
finite set without replacement. While this weaker assumption is
preferable, we highlight that the target-domain generalization
bounds in Theorem 11 and 12 can be further tightened by
a factor of 1/m′ when the i.i.d condition is incorporated.
Therefore, one can now guarantee better generalization by
increasing the number of domains, which is consistent with
real-world observations.

Theorem 18. If Assumption 3 holds and the target domains
Dt are independent, then for any fixed w ∈ W ,

P{|Lt(w)− L(w)| ≥ ε} ≤ 2σ2

m′ε2
I(Z;D).

Theorem 19. If Assumption 2 and 4 hold and the target
domains Dt are independent, then for any fixed classifier ψ,

P{Lt(ψ)− L(ψ) ≥ ε+ L∗} ≤ 2σ2

m′ε2
I(R;D),

where L∗ = minf∗:R7→Y Lt(f
∗) + L(f∗).

Furthermore, when the source domains satisfy the i.i.d
condition, it can be proved that

∑m
i=1 I(W ;Di) ≤ I(W ;Ds).

Otherwise, we can only guarantee I(W ;Di) ≤ I(W ;Ds) for
any i ∈ [1,m]. This indicates that while the model achieves
source-domain generalization by letting I(W ;Di) → 0, it
can still learn from source domains Ds. That is, having
I(W ;Di) = 0 for all i ∈ [1,m] does not necessarily lead to
I(W ;Ds) = 0. To see this, one can take Di as independent
Bernoulli variables Bern(1/2), and let W = D1 ⊕ · · · ⊕Dm,
where ⊕ is the XOR operator. Then it is easy to verify that
W is independent of each Di since PW |Di = PW , implying
I(W ;Di) = 0. However, I(W ;Ds) = H(W ) is strictly
positive.

C. High-probability Problem Formulation

An alternative high-probability formulation of the DG prob-
lem is presented by [16], named Quantile Risk Minimization
(QRM). Under our notations, the QRM objective can be
expressed as:

min
w
ε s.t. P{Lt(w) ≥ ε} ≤ δ.

The main difference between our formulation (Problem 6)
and QRM is that we not only consider the randomness of
Dt, but also that of Ds and W . The randomized nature

of domains and the hypothesis serve as the foundation for
our information-theoretic generalization analysis. While our
formulation inspires an algorithm by matching inter-domain
gradients and representations, the optimization of the objective
in [16] is not directly tractable and requires further kernel
density estimation to approximate the quantile of the risk
distribution. It is also questionable to use training risks as a
surrogate to optimize the quantile of test risk distribution, as
source domains do not satisfy the independence assumption
between W and Ds required by the QRM objective. Further-
more, kernel density estimation would be challenging when
the number of source domains is not sufficiently large. On the
contrary, IDM could be easily implemented when there are at
least 2 source domains.

Additionally, Problem 6 aims to find the optimal learning
algorithm instead of the optimal hypothesis. This would be
essential to analyze the correlations between the hypothesis W
and source domains Ds, and is more suitable in robust learning
settings when measuring the error bar. The trade-off between
optimization and generalization is also more explicitly and
intuitively characterized in our formulation.

D. Tighter Bounds for Target-Domain Population Risk

In a similar vein, we provide the following bounds for
target-domain generalization error in terms of Wasserstein
distances.

Theorem 20. If Assumption 5 holds, then for any w ∈ W ,

P{|Lt(w)− L(w)| ≥ ε} ≤ β2

m′ε2
ED[W2(PZ|D=d, PZ)].

Theorem 21. If Assumption 4 holds, and `(fw(X), fw′(X))
is β-Lipschitz for any w,w′ ∈ W , then for any w ∈ W ,

P{Lt(w)− L(w) ≥ ε+ L∗} ≤ β2

m′ε2
ED[W2(PX|D=d, PX)],

where L∗ = minw∗∈W(Lt(w
∗) + L(w∗)).

Proof. The proof follows the same development as Theorem
10.

The expected Wasserstein distance metrics above serve as
analogs to the extent of covariate shift I(Z;D) and I(X;D),
through a similar reduction as depicted in equation (2).

Inspired by recent advancements in information-theoretic
generalization analysis which incorporate network predictions
or losses to derive tighter bounds [41], [56], we further tighten
these target-domain generalization bounds by considering the
distribution shift of the risk. For any hypothesis w ∈ W and
domain d ∈ D, let L = `(fw(X), Y ) be the risk of predicting
a randomly given sample Z ∼ PZ|D=d. Through a similar
sketch as the proof of Theorem 11, we can prove that

P{|Lt(w)− L(w)| ≥ ε} ≤ M2

2ε2
I(L;D).

According to the Markov chain relationship D → (X,Y ) →
(fφ(X), Y ) → (fw(X), Y ) → L, this bound is strictly
tighter than Theorem 11 which uses sample space I(Z;D)
or representation space I(R, Y ;D) distribution shifts. Also,
notice that the mutual information I(L;D) could be rewritten
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as ED[KL(PL|D ‖PL)], this suggests that matching the inter-
domain distributions of the risks helps to generalize on target
domains. This observation facilitates the work of [15], which
proposes to align the empirical risks of distinct source do-
mains. However, there still exists a gap between target-domain
risk shift I(L;D) and its empirical counterpart I(Li;Di),
which further requires minimizing I(W ;Di). Considering that
L is a scalar while R is a vector, aligning the distributions
of the risks avoids high-dimensional distribution matching
and may enable efficient implementation. We will leave this
method for future research.

E. Generalization Bounds for Source-Domain Empirical Risk

In the analysis above, we are mainly focusing on the
domain-level generalization error, which corresponds to the
case when we have an infinite number of samples for each
domain to evaluate the population risk. However, the standard
generalization error raised by a finite number of samples
cannot be simply ignored in practice, and requires additional
regularization (e.g. weight decay, dropout) to tackle. In this
section, we further consider the effect of finite training sam-
ples to address the generalization gap between domain-level
population and empirical risks:

Theorem 22. If Assumption 2 holds, then

|EW,Ds,S [L′(W )]− EW [L(W )]| ≤ 1

m

m∑
i=1

√
M2

2
I(W ;Di)

+
1

mn

m∑
i=1

n∑
j=1

√
M2

2
I(W ;Zij |Di),

P{|EW,Ds,S [L′(W )]− EW [L(W )]| ≥ ε}

≤ M2

mnε2
(I(W ;S) + log 3),

where L′(W ) = 1
m

∑m
i=1

1
n

∑n
j=1 `(fW (Xi

j), Y
i
j ).

Theorem 23. If `(fw(X), Y ) is β′-Lipschitz w.r.t w, then

|EW,Ds,S [L′(W )]− EW [L(W )]|

≤ β′

m

m∑
i=1

EDi [W(PW |Di , PW )]

+
β′

mn

m∑
i=1

n∑
j=1

EDi,Zij [W(PW |Di,Zij , PW |Di)].

The theorems above provide upper bounds for the empir-
ical generalization risk by exploiting the mutual information
between the hypothesis and the samples (or the Wasserstein
distance counterparts). Compared to Theorems 8 and 10, these
results additionally consider the randomness of the data sam-
ples Zij , indicating that traditional techniques for improving
the generalization of classical supervised learning algorithms
by minimizing I(W ;S), such as gradient clipping [25], [35]
and stochastic gradient perturbation [57], [58] methods, also
enhance the capability of domain generalization algorithms
A to generalize on target domains under our high-probability
problem setting by preventing overfitting to training samples.
This observation is also verified in [35]. Relevant analysis may

also motivate information-theoretic generalization analysis for
meta-learning tasks [59]–[62]. Although addressing the stan-
dard generalization error is also a promising research direction,
it is beyond the scope of solving Problem 6 and is thus not
our main focus in this paper.

F. High-probability Generalization Bounds
Our main results in Section III generally have a linear

dependence 1
δ on the probability factor, which may lead

to sub-optimal bounds when δ → 0. In this section, we
demonstrate that these results can be further improved to
achieve a logarithm dependence of log( 1

δ ), which will be more
intriguing under high-probability scenarios.

Theorem 24. If Assumption 2 holds, then for any λ ∈ [0, 1),
with probability at least 1− δ over the draw of Ds and W ,

|L(W )− Ls(W )|

≤ 1

m

m∑
i=1

√
M2

2λ

(
ı(W ;Di) + log

m

δ
√

1− λ

)
.

Theorem 25. If assumption 3 holds, then for any w ∈ W and
λ ∈ [0, 1), with probability at least 1−δ over the draw of Dt,

|L(w)− Lt(w)|

≤ 1

m′

m′∑
k=1

√
2σ2

λ

(
KL
(
PZ|D′k

∥∥∥PZ)+ log
m′

δ
√

1− λ

)
.

The above Theorem 24 and 25 serve as high-probability
analogs for Theorem 8 and 11 respectively. Here, the infor-
mation density ı(W ;Di) acts as an alternative measure of
the extent of correlation between the hypothesis and source
domains, by noticing that EW,Di [ı(W ;Di)] = I(W ;Di).
Similarly, the KL divergence KL

(
PZ|D

∥∥PZ) substitutes the
original distribution shift mutual information and satisfies
ED[KL

(
PZ|D

∥∥PZ)] = I(Z;D). One can also extend The-
orem 25 to accommodate the representation space covariate
shift through similar procedures as the proof of Theorem 12.
Therefore, these high-probability generalization bounds also
motivate the design of new DG algorithms via gradient and
representation matching techniques. However, Theorem 24 and
25 do not necessarily converge to 0 even if ı(W ;Di)→ 0 and
KL
(
PZ|D

∥∥PZ)→ 0 because of the existence of an additive
high-probability term. In contrast, Theorem 8 and 11 guarantee
that Ls(W ) = L(W ) or Lt(w) = L(w) once I(W ;Di) = 0
or I(Z;D) = 0 is satisfied.

VIII. CONCLUSION

In this work, we explore a novel perspective for DG by
minimizing the domain-level generalization gap with high
probability, which facilitates information-theoretic analysis for
the generalization behavior of learning algorithms. Our analy-
sis sheds light on understanding how gradient or representation
matching enhances generalization and unveils the complemen-
tary relationship between these two elements. These theoretical
insights inspire us to design the IDM algorithm by simulta-
neously aligning inter-domain gradients and representations,
which then achieves superior performance on the DomainBed
benchmark.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3531136

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on February 02,2025 at 11:54:18 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INFORMATION THEORY 12

APPENDIX A
PREREQUISITE DEFINITIONS AND LEMMAS

Definition 26. (Sub-Gaussian) A random variable X is σ-
subGaussian if for any ρ ∈ R, E[exp(ρ(X − E[X]))] ≤
exp(ρ2σ2/2).

Definition 27. (Kullback-Leibler Divergence) Let P and
Q be probability measures on the same space X , the KL
divergence from P to Q is defined as KL(P ‖Q) ,∫
X p(x) log(p(x)/q(x)) dx.

Definition 28. (Mutual Information) Let (X,Y ) be a pair of
random variables with values over the space X ×Y . Let their
joint distribution be PX,Y and the marginal distributions be
PX and PY respectively, the mutual information between X
and Y is defined as I(X;Y ) = KL(PX,Y ‖PXPY ).

Definition 29. (Wasserstein Distance) Let c(·, ·) be a met-
ric and let P and Q be probability measures on X . De-
note Γ(P,Q) as the set of all couplings of P and Q
(i.e. the set of all joint distributions on X × X with two
marginals being P and Q), then the Wasserstein distance
of order p between P and Q is defined as Wp(P,Q) ,(

infγ∈Γ(P,Q)

∫
X×X c(x, x

′)p dγ(x, x′)
)1/p

.

Unless otherwise noted, we use log to denote the loga-
rithmic function with base e, and use W(·, ·) to denote the
Wasserstein distance of order 1.

Definition 30. (Total Variation) The total variation be-
tween two probability measures P and Q is TV(P,Q) ,
supE |P (E) − Q(E)|, where the supremum is over all mea-
surable set E.

Lemma 31 (Lemma 1 in [45]). Let (X,Y ) be a pair of
random variables with joint distribution PX,Y and let Ȳ
be an independent copy of Y . If f(x, y) is a measurable
function such that EX,Y [f(X,Y )] exists and f(X, Ȳ ) is σ-
subGaussian, then∣∣EX,Y [f(X,Y )]− EX,Ȳ [f(X, Ȳ )]

∣∣ ≤√2σ2I(X;Y ).

Furthermore, if f(x, Y ) is σ-subGaussian for each x and the
expectation below exists, then

EX,Y
[(
f(X,Y )− EȲ [f(X, Ȳ )]

)2] ≤ 4σ2(I(X;Y ) + log 3),

and for any ε > 0, we have

P
{∣∣f(X,Y )− EȲ [f(X, Ȳ )]

∣∣ ≥ ε} ≤ 4σ2(I(X;Y ) + log 3)

ε2
.

Lemma 32 (Lemma 2 in [45]). Let X be σ-subGaussian and
E[X] = 0, then for any λ ∈ [0, 1/4σ2):

EX
[
eλX

2
]
≤ 1 + 8λσ2.

Lemma 33. (Donsker-Varadhan formula) Let P and Q be
probability measures defined on the same measurable space,
where P is absolutely continuous with respect to Q. Then

KL(P ‖Q) = sup
X

{
EP [X]− logEQ[eX ]

}
,

where X is any random variable such that eX is Q-integrable
and EP [X] exists.

Lemma 34. Let P , and Q be probability measures defined
on the same measurable space. Let X ∼ P and X ′ ∼ Q. If
f(X) is σ-subGaussian w.r.t X and the following expectations
exists, then

|EX′ [f(X ′)]− EX [f(X)]| ≤
√

2σ2KL(Q ‖P ),

EX′
[
(f(X ′)− EX [f(X)])

2
]
≤ 4σ2(KL(Q ‖P ) + log 3).

Furthermore, by combining the results above and Markov’s
inequality, we have that for any ε > 0:

P{|f(X ′)− EX [f(X)]| ≥ ε} ≤ 4σ2

ε2
(KL(Q ‖P ) + log 3).

Proof. Let λ ∈ R be any non-zero constant, then by the
subGaussian property of f(X):

logEX
[
eλ(f(X)−EX [f(X)])

]
≤ λ2σ2

2
,

logEX
[
eλf(X)

]
− λEX [f(X)] ≤ λ2σ2

2
.

By applying Lemma 33 with X = λf(X) we have

KL(Q ‖P ) ≥ sup
λ

{
EX′ [λf(X ′)]− logEX

[
eλf(X)

]}
≥ sup

λ

{
EX′ [λf(X ′)]− λEX [f(X)]− λ2σ2

2

}
=

1

2σ2
(EX′ [f(X ′)]− EX [f(X)])

2
,

where the supremum is taken by setting λ = 1
σ2 (EX′ [f(X ′)]−

EX [f(X)]). This completes the proof of the first inequality.
To prove the second inequality, let g(x) = (f(x) −

EX [f(X)])2 and λ ∈ [0, 1/4σ2). Apply Lemma 33 again with
X = λg(X), we have

KL(Q ‖P ) ≥ sup
λ

{
EX′ [λg(X ′)]− logEX

[
eλg(X)

]}
= sup

λ

{
EX′

[
λ(f(X ′)− EX [f(X)])

2
]

− logEX
[
eλ(f(X)−EX [f(X)])2

]}
≥ sup

λ

{
EX′

[
λ(f(X ′)− EX [f(X)])

2
]

− log(1 + 8λσ2)

}
≥ 1

4σ2
EX′

[
(f(X ′)− EX [f(X)])

2
]
− log 3,

where the second inequality follows by applying Lemma 32
and the last inequality follows by taking λ → 1

4σ2 . This
finishes the proof of the second inequality.

Furthermore, by applying Markov’s inequality, we can get:

P{|f(X ′)− EX [f(X)]| ≥ ε}

= P
{

(f(X ′)− EX [f(X)])
2 ≥ ε2

}
≤ 1

ε2
EX′

[
(f(X ′)− EX [f(X)])

2
]
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≤ 4σ2

ε2
(KL(Q ‖P ) + log 3),

which completes the proof.

Lemma 35 (Proposition 5.2 in [63]). Assume that almost
surely under PY , f : X × Y 7→ R is a function satisfying
EPX|Y [f(X,Y )] < ∞ and PX|Y � PX . Let Ȳ be an
independent copy of Y . Then with probability at least 1− δ,

EX|Y [f(X,Y )] ≤ logEX,Ȳ

[
ef(X,Ȳ )

δ

]
+ KL(PX|Y ‖PX).

Lemma 36 (Proposition 5.10 in [63]). Assume that PX,Y �
PXPY and PXPY � PX,Y . Let Ȳ be an independent copy
of Y . Then for any function f(·, ·), with probability at least
1− δ,

f(X,Y ) ≤ logEX,Ȳ

[
ef(X,Ȳ )

δ

]
+ ı(X;Y ),

where ı(X;Y ) = log
dPX,Y
dPXPY

is the information density.

Lemma 37 (Proposition 3.25 in [63]). Let X be a σ-
subGaussian variable and let S = 1

n

∑n
i=1Xi be the average

of n independent instances of X . Then for any λ ∈ [0, 1),

E
[
e
nλ(S−E[x])2

2σ2

]
≤ 1√

1− λ
.

Lemma 38. (Kantorovich-Rubinstein Duality) Let P and Q
be probability measures defined on the same measurable space
X , then

W(P,Q) = sup
f∈Lip1

{∫
X
f dP −

∫
X
f dQ

}
,

where Lip1 denotes the set of 1-Lipschitz functions in the
metric c, i.e. |f(x) − f(x′)| ≤ c(x, x′) for any f ∈ Lip1

and x, x′ ∈ X .

Lemma 39. (Pinsker’s Inequality) Let P and Q be probability
measures defined on the same space, then TV(P,Q) ≤√

1
2KL(Q ‖P ).

Lemma 40 (Theorem 4.1 in [64]). For any QY , we have
EX [KL(PY |X ‖QY )] = I(X;Y ) + KL(PY ‖QY ).

Proposition 41. For any constant λ ∈ (0, 1), we have

P{|Ls(W )− Lt(W )| ≥ ε}
≤ P{|Ls(W )− L(W )| ≥ λε}

+ P{|Lt(W )− L(W )| ≥ (1− λ)ε}.

Proof. Notice that |Ls(W ) − L(W )| ≤ λε and |Lt(W ) −
L(W )| ≤ (1 − λ)ε together implies |Ls(W ) − Lt(W )| ≤ ε,
we then have

P{|Ls(W )− Lt(W )| ≤ ε}
≥ P{|Ls(W )−L(W )| ≤ λε ∧ |Lt(W )−L(W )| ≤ (1−λ)ε}.

This implies that

P{|Ls(W )− Lt(W )| ≥ ε}
≤ P{|Ls(W )−L(W )| ≥ λε ∨ |Lt(W )−L(W )| ≥ (1−λ)ε}.

By applying Boole’s inequality, we then have

P{|Ls(W )− Lt(W )| ≥ ε}
≤ P{|Ls(W )− L(W )| ≥ λε}

+ P{|Lt(W )− L(W )| ≥ (1− λ)ε}.

The proof is complete.

APPENDIX B
OMITTED PROOFS

Proof of Proposition 7. For any x ∈ X , by applying Lemma
40 with X = D|X=x and Y = Y |X=x, we have

ED|X=x[KL(PY |D,X=x ‖QY |X=x)]

= I(D;Y |X = x) + KL(PY |X=x ‖QY |X=x)

≥ I(D;Y |X = x).

The last inequality is by the positiveness of the KL divergence.
It holds with equality if and only if QY |X = PY |X . Taking
expectation over X , we then have

ED,X [KL(PY |D,X ‖QY |X)] ≥ I(D;Y |X).

Proof of Theorem 8. For any D ∈ Ds, one can verify that
|LD̄(W ) − L(W )| ∈ [0,M ] and is thus M

2 -subGaussian. By
applying Lemma 31 with X = W , Y = D and f(W,D) =
|LD(W )− L(W )|, we obtain

EW,D|LD(W )− L(W )| − EW,D̄|LD̄(W )− L(W )|

≤
√
M2

2
I(W ;D).

Summing up this inequality over each source domain, we then
have

EW,Ds |Ls(W )− L(W )|

= EW,Ds

∣∣∣∣∣ 1

m

m∑
i=1

LDi(W )− L(W )

∣∣∣∣∣
≤ 1

m

m∑
i=1

EW,Di |LDi(W )− L(W )|

≤ 1

m

m∑
i=1

√
M2

2
I(W ;Di) + EW,D̄|LD̄(W )− L(W )|.

By applying Markov’s inequality, we finally have

P{|Ls(W )− L(W )| ≥ ε} ≤ M

mε
√

2

m∑
i=1

√
I(W ;Di)

+
1

ε
EW,D̄|LD̄(W )− L(W )|.

Additionally, by assuming that the source domains are inde-
pendent, we have

I(W ;Ds) = I(W ; {Di}mi=1)

= I(W ;D1) + I(W ; {Di}mi=2|D1)

= I(W ;D1) + I(W ; {Di}mi=2)

− I({Di}mi=2;D1) + I({Di}mi=2;D1|W )

= I(W ;D1) + I(W ; {Di}mi=2)
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+ I({Di}mi=2;D1|W )

≥ I(W ;D1) + I(W ; {Di}mi=2)

≥ · · ·

≥
m∑
i=1

I(W ;Di).

Proof of Theorem 10. For any Di ∈ Ds, let P = PW |Di=d,
Q = PW and f(w) = LDi(w) in Lemma 38, then

|EW,Ds [Ls(W )]− EW [L(W )]|

≤ 1

m
EDs

[
m∑
i=1

∣∣EW |Di [LDi(W )]− EW [L(W )]
∣∣]

=
1

m
EDs

[
m∑
i=1

|EW |Di [LDi(W )]− EW [LDi(W )]|

]

≤ 1

m
EDs

[
m∑
i=1

β′W(PW |Di , PW )

]

=
β′

m

m∑
i=1

EDi [W(PW |Di , PW )].

When the metric d is discrete, the Wasserstein distance is equal
to the total variation. Combining with Lemma 39, we have the
following reductions:

EDi [W(PW |Di , PW )] = EDi [TV(PW |Di , PW )]

≤ EDi

[√
1

2
KL(PW |Di ‖PW )

]

≤
√

1

2
I(W ;Di),

where the last inequality follows by applying Jensen’s inequal-
ity on the concave square root function.

Proof of Theorem 11. By the identical marginal distribution
of the target domains Dt = {D′k}m

′

k=1, we have

EDt [Lt(w)] =
1

m′

m′∑
k=1

ED′k [LD′k(w)] =
1

m′

m′∑
k=1

ED[LD(w)]

= ED[LD(w)] = L(w).

For any d ∈ D, by applying Lemma 34 with P = PZ , Q =
PZ|D=d and f(Z) = `(fw(X), Y ), we can get

|Ld(w)− L(w)| =
∣∣EZ|D=d[`(fw(X), Y )]− EZ [`(fw(X), Y ]

∣∣
≤
√

2σ2KL(PZ|D=d ‖PZ).

Taking the expectation over D ∼ ν, we can get

ED|Ld(w)− L(w)| ≤ ED
√

2σ2KL(PZ|D ‖PZ)

≤
√

2σ2ED[KL(PZ|D ‖PZ)]

= σ
√

2I(Z;D).

By summing up the inequality above over each target domain,
we can get

EDt |Lt(w)− L(w)| = EDt

∣∣∣∣∣∣ 1

m′

m′∑
k=1

LD′k(w)− L(W )

∣∣∣∣∣∣

≤ 1

m′

m′∑
k=1

ED′k
∣∣∣LD′k(w)− L(W )

∣∣∣
≤ 1

m′

m′∑
k=1

σ
√

2I(Z;D′k)

= σ
√

2I(Z;D).

By applying Markov’s inequality, we finally have

P{|Lt(w)− L(w)| ≥ ε} ≤ σ

ε

√
2I(Z;D).

Proof of Theorem 12. For any domain d ∈ D, classifier ψ and
f∗ : R 7→ Y , denote

Ld(ψ, f
∗) = ER|D=d[`(fψ(R), f∗(R))],

L(ψ, f∗) = ER[`(fψ(R), f∗(R))].

By setting P = PR, Q = PR|D=d and f(R) =
`(fψ(R), f∗(R)) and applying Lemma 34, we have

|Ld(ψ, f∗)− L(ψ, f∗)| ≤
√

2σ2KL(PR|D=d ‖PR).

By taking the expectation over D ∼ ν, we get

ED|LD(ψ, f∗)− L(ψ, f∗)| ≤ ED
√

2σ2KL(PR|D ‖PR)

≤
√

2σ2I(R;D).

If Assumption 4 holds, then by the symmetry and triangle
inequality of `(·, ·), we have

Ld(ψ, f
∗) = ER|D=d[`(fψ(R), f∗(R))]

≤ ER,Y |D=d[`(fψ(R), Y ) + `(f∗(R), Y )]

= Ld(ψ) + Ld(f
∗).

L(ψ, f∗) ≤ L(ψ) + L(f∗).

Similarly, we can prove that

Ld(ψ, f
∗) = ER|D=d[`(fψ(R), f∗(R))]

≥ ER,Y |D=d[`(fψ(R), Y )− `(f∗(R), Y )]

= Ld(ψ)− Ld(f∗).
L(ψ, f∗) ≥ L(ψ)− L(f∗).

Combining the results above, we have

Ld(ψ)− L(ψ) ≤ Ld(ψ, f∗) + Ld(f
∗)− L(ψ, f∗) + L(f∗),

L(ψ)− Ld(ψ) ≤ L(ψ, f∗) + L(f∗)− Ld(ψ, f∗) + Ld(f
∗).

Combining the two inequalities above, we then get

|Ld(ψ)− L(ψ)| ≤ |Ld(ψ, f∗)− L(ψ, f∗)|+Ld(f
∗)+L(f∗).

By taking the expectation over D ∼ ν, we obtain

ED|LD(ψ)− L(ψ)| ≤ ED|LD(ψ, f∗)− L(ψ, f∗)|
+ ED[LD(f∗) + L(f∗)]

≤
√

2σ2I(R;D) + 2L(f∗).

Summing up the inequality above over each target domain, we
can get

EDt |Lt(ψ)− L(ψ)| ≤ EDt

∣∣∣∣∣∣ 1

m′

m′∑
k=1

LD′k(ψ)− L(ψ)

∣∣∣∣∣∣
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≤ 1

m′

m′∑
k=1

ED′k
∣∣∣LD′k(ψ)− L(ψ)

∣∣∣
≤ 1

m′

m′∑
k=1

(√
2σ2I(R;D) + 2L(f∗)

)
=
√

2σ2I(R;D) + 2L(f∗).

By applying Markov’s inequality, we finally have

P{Lt(ψ)− L(ψ) ≥ ε} ≤ σ

ε

√
2I(R;D) +

2

ε
L(f∗).

The proof is complete by taking the minimizer of
minf∗ [L(f∗)].

Proof of Proposition 13. The condition PR,D � PRi,Di and
PRi,Di � PR,D implies that there exists B > 1, such that for
any r ∈ R, d ∈ D, we have PR,D(r,d)

PRi,Di (r,d) ∈ [ 1
B , B]. Therefore,

log
PR,D
PRi,Di

∈ [− log(B), log(B)] and is log(B)-subGaussian.
By applying Lemma 31 with X = W , Y = Di and

f(W,D) = EX|D[log
PR,D(fΦ(X),D)
PRi,Di (fΦ(X),D) ], we have

SKL(PR,D ‖PRi,Di)
= |KL(PR,D ‖PRi,Di) + KL(PRi,Di ‖PR,D)|

=

∣∣∣∣EW,Di,Ri[log
PR,D(Ri, Di)

PRi,Di(Ri, Di)

]
− EW,D,R

[
log

PR,D(R,D)

PRi,Di(R,D)

]∣∣∣∣
≤
√

2 log2(B)I(W ;Di).

Proof of Theorem 9. Noticing the Markov chain relationship
Di → (WT−1, GT ) → WT−1 + GT , then by the data
processing inequality

I(WT ;Di) = I(WT−1 +GT ;Di)

≤ I(WT−1, GT ;Di)

= I(WT−1;Di) + I(GT ;Di|WT−1).

where the last equality is by the chain rule of conditional
mutual information. By applying the reduction steps above
recursively, we can get

I(WT ;Di) ≤ I(WT−1;Di) + I(GT ;Di|WT−1)

≤ I(WT−2;Di) + I(GT−1;Di|WT−2)

+ I(GT ;Di|WT−1)

≤ · · ·

≤
T∑
t=1

I(Gt;Di|Wt−1).

When the source domains are independent, we additionally
have

I(WT ;Di) ≤ I(WT−1;Di) + I(GT ;Di|WT−1)

≤ I(WT−1;Di) + I
(
{GkT }mk=1;Di|WT−1

)
= I(WT−1;Di) + I

(
GiT ;Di|WT−1

)
+ I
(
{GkT }mk=1 \GiT ;Di|WT−1, G

i
T

)
= I(WT−1;Di) + I

(
GiT ;Di|WT−1

)
.

Then by the same scheme of recursive reduction, we can prove
that

I(WT ;Di) ≤
T∑
t=1

I
(
Git;Di|Wt−1

)
.

Proof of Theorem 14. Without loss of generality, we assume
that the data-generating distributions p(X|D) are Gaussian
with zero means for simplicity, i.e.

p(x|D = d) =
1√

(2π)n|Σd|
exp

(
−1

2
x>Σdx

)
,

where Σd is the corresponding covariance matrix of domain
d. Let X ∈ Rn×b be the data matrix of S such that the i-th
column of X equals xi, we then have

p(S = s|D = d) =
1√

(2π)bn|Σd|b
exp

(
−1

2
tr(X>ΣdX)

)
.

Since the rank of X is at most b, one can decompose
Σd = Σ1

d+Σ2
d with rank(Σ1

d) = b and rank(Σ2
d) = n−b ≥ 2

through eigenvalue decomposition, and let the eigenvector
space of Σ1

d cover the column space of X . Then we have

tr(X>Σ1
dX) = tr(X>ΣdX), and tr(X>Σ2

dX) = 0.

Therefore, one can arbitrarily modify the eigenvector space of
Σ2
d as long as keeping it orthogonal to that of Σ1

d, without
changing the value of tr(X>ΣdX). This finishes the proof of
the first part.

To prove the second part, similarly we decompose Σd by
Σ1
d + Σ2

d such that rank(Σ1
d) = 2b + 1 and rank(Σ2

d) = n −
2b − 1 ≥ 1, and make the eigenvector space of Σ1

d cover the
column space of both X1 and X2, where X1 and X2 are the
data matrix of S1 and S2 respectively. We then have

tr(X>1 Σ1
dX1) = tr(X>1 ΣdX1),

tr(X>2 Σ1
dX2) = tr(X>2 ΣdX2),

and tr(X>1 Σ2
dX1) = tr(X>2 Σ2

dX2) = 0.

Let Σ1
d = U>d ΛdUd be the eigenvalue decomposition of Σ1

d,
where Ud ∈ R(2b+1)×n and Λd = diag(λd1, · · · , λd2b+1).
Notice that for any x ∈ Rn, we have x>Σdx =
(Udx)>Λd(Udx) =

∑2b+1
i=1 (Udx)2

iλi. By assuming that p(S =
s1|D = d) = p(S = s2|D = d), we have the following
homogeneous linear equations:

a1
1λ1 + a2

1λ2 + · · ·+ a2b+1
1 λ2b+1 = 0,

a1
2λ1 + a2

2λ2 + · · ·+ a2b+1
2 λ2b+1 = 0,

· · ·
a1
bλ1 + a2

bλ2 + · · ·+ a2b+1
b λ2b+1 = 0,

where aji = (Udx
1
i )

2
j − (Udx

2
i )

2
j . Since 2b+ 1 > b, the linear

system above has infinite non-zero solutions, which finishes
the proof of the second part.

Proof of Theorem 15. Recall that p̄(x) = 1
b

∑b
i=1 pi(x) and

q̄(x) = 1
b

∑b
i=1 qi(x), we then have

KL(P̄ ‖ Q̄) =

∫
X
p̄(x) log

(
p̄(x)

q̄(x)

)
dx
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= −
∫
X
p̄(x) log

(
1

b

b∑
i=1

pi(x)

p̄(x)
·
qf(i)(x)

pi(x)

)
dx

≤ −
∫
X
p̄(x)

1

b

b∑
i=1

pi(x)

p̄(x)
log

(
qf(i)(x)

pi(x)

)
dx

= −1

b

b∑
i=1

∫
X
pi(x) log

(
qf(i)(x)

pi(x)

)
dx

=
1

b

b∑
i=1

KL(Pi ‖Qf(i)),

where the only inequality follows by applying Jensen’s in-
equality on the concave logarithmic function. This finishes the
proof of the upper bound for KL divergence.

To prove the counterpart for Wasserstein distance, we apply
Lemma 38 on P̄ and Q̄:

W(P̄ , Q̄)

= sup
f∈Lip1

{∫
X
f dP̄ −

∫
X
f dQ̄

}
= sup
f∈Lip1

{∫
X
f d

(
1

b

b∑
i=1

Pi

)
−
∫
X
f d

(
1

b

b∑
i=1

Qf(i)

)}

≤ 1

b

b∑
i=1

sup
f∈Lip1

{∫
X
f dPi −

∫
X
f dQf(i)

}

=
1

b

b∑
i=1

W(Pi, Qf(i)).

The proof is complete.

Proof of Theorem 16. For simplicity, we assume that all data
points of {x1

i }bi=1 and {x2
i }bi=1 are different from each other.

Since Pi and Qi are Gaussian distributions with the same
variance, the KL divergence and Wasserstein distance between
them could be analytically acquired:

KL(Pi ‖Qj) =
(x1
i − x2

j )
2

2σ2
, and W(Pi, Qj) = |x1

i − x2
j |.

Suppose there exists i ∈ [1, b] such that f(i) 6= i. Without
loss of generality, we assume that f(i) > i. Then by the
pigeonhole principle, there exists j ∈ (i, b] that satisfies
f(j) < f(i). Suppose that {x1

i }bi=1, {x2
i }bi=1 are both sorted in

ascending order, we have x1
i < x1

j and x2
f(i) > x2

f(j). For any
p ∈ {1, 2}, the following 3 cases cover all possible equivalent
combinations of the order of x1

i , x1
j , x2

f(j) and x2
f(i):

• When x1
i < x1

j < x2
f(j) < x2

f(i) and p = 2, we have

(x1
i − x2

f(i))
2 + (x1

j − x2
f(j))

2

− (x1
i − x2

f(j))
2 − (x1

j − x2
f(i))

2

= (2x1
i − x2

f(i) − x
2
f(j))(x

2
f(j) − x

2
f(i))

− (2x1
j − x2

f(j) − x
2
f(i))(x

2
f(j) − x

2
f(i))

= (x2
f(j) − x

2
f(i))(2x

1
i − 2x1

j ) > 0.

Elsewise when p = 1, we have

|x1
i − x2

f(i)|+ |x
1
j − x2

f(j)| = |x
1
i − x2

f(j)|+ |x
1
j − x2

f(i)|.

• When x1
i < x2

f(j) < x1
j < x2

f(i), we have

|x1
i − x2

f(i)|
p > |x1

i − x2
f(j)|

p + |x1
j − x2

f(i)|
p.

• When x1
i < x2

f(j) < x2
f(i) < x1

j , we have

|x1
i − x2

f(i)|
p + |x1

j − x2
f(j)|

p

≥ |x1
i − x2

f(j)|
p + |x2

f(i) − x
2
f(j)|

p

+ |x1
j − x2

f(i)|
p + |x2

f(i) − x
2
f(j)|

p

> |x1
i − x2

f(j)|
p + |x1

j − x2
f(i)|

p.

In conclusion, under all possible circumstances, we have |x1
i −

x2
f(i)|

p + |x1
j − x2

f(j)|
p ≥ |x1

i − x2
f(j)|

p + |x1
j − x2

f(i)|
p, which

implies that by setting f ′(i) = f(j), f ′(j) = f(i) and f ′(k) =
f(k) for k /∈ {i, j}, f ′ will be a better choice over f to
minimize KL(P̄ ‖ Q̄) or W(P̄ , Q̄). The proof is complete since
the existence of a minimizer is obvious.

Proof of Theorem 18. If Assumption 3 holds, then for any d ∈
D, by setting P = PZ , Q = PZ|D=d and f(z) = `(fw(x), y)
in Lemma 34, we have

(Ld(w)− L(w))2

=
(
EZ|D=d[`(fw(X), Y )]− EZ [`(fw(X), Y ]

)2
≤
(√

2σ2KL(PZ|D=d ‖PZ)
)2

≤ 2σ2KL(PZ|D=d ‖PZ).

Taking the expectation over D ∼ ν, we can get

ED[(LD(w)− L(w))2] ≤ ED
[
2σ2KL(PZ|D=d ‖PZ)

]
= 2σ2KL(PZ|D ‖PZ)

= 2σ2I(Z;D).

When the target domains {D′k}m
′

i=k are independent of each
other, they can be regarded as i.i.d copies of D, i.e.

VarDt [Lt(w)] =
1

m′2

m′∑
k=1

VarD′k [LD′k(w)]

=
1

m′2

m′∑
k=1

ED′k [(LD′k(w)− L(w))2]

≤ 1

m′2

m′∑
k=1

2σ2I(Z;D)

=
1

m′
2σ2I(Z;D).

Finally, by applying Chebyshev’s inequality, we can prove that

P{|Lt(w)− L(w)| ≥ ε} ≤ 2σ2

m′ε2
I(Z;D).

Proof of Theorem 19. For any domain d ∈ D, classifier ψ and
f∗ : R 7→ Y , denote

Ld(ψ, f
∗) = ER|D=d[`(fψ(R), f∗(R))],

L(ψ, f∗) = ER[`(fψ(R), f∗(R))].

By setting P = PR, Q = PR|D=d and f(R) =
`(fψ(R), f∗(R)) and applying Lemma 34, we have

(Ld(ψ, f
∗)− L(ψ, f∗))

2 ≤ 2σ2KL(PR|D=d ‖PR).
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By taking the expectation over D ∼ ν, we get

ED
[
(Ld(ψ, f

∗)− L(ψ, f∗))
2
]
≤ 2σ2KL(PR|D ‖PR)

= 2σ2I(R;D).

Through a similar procedure of proving Theorem 11, we have

P{|Ld(ψ, f∗)− L(ψ, f∗)| ≥ ε} ≤ 2σ2

m′ε2
I(R;D).

Recall that in Theorem 12 we proved

Ld(ψ, f
∗) ≤ Ld(ψ) + Ld(f

∗).

L(ψ, f∗) ≤ L(ψ) + L(f∗).

Ld(ψ, f
∗) ≥ Ld(ψ)− Ld(f∗).

L(ψ, f∗) ≥ L(ψ)− L(f∗).

Combining the results above, we have that with probability at
least 1− 2σ2

m′ε2 I(R;D),

Lt(ψ) ≤ Lt(ψ, f∗) + Lt(f
∗)

≤ L(ψ, f∗) + ε+ Lt(f
∗)

≤ L(ψ) + L(f∗) + ε+ Lt(f
∗).

By minimizing Lt(f∗) + L(f∗), it follows that

P
{
Lt(ψ)− L(ψ) ≥ ε+ min

f∗
(Lt(f

∗) + L(f∗))

}
≤ 2σ2

m′ε2
I(R;D),

which finishes the proof.

Proof of Theorem 22. Recall that any random variables
bounded by [0,M ] are M

2 -subGaussian. From assumption 2,
we know that `(fW (X), Y ) is M

2 -subGaussian w.r.t PW ◦PZ .
Then by applying Lemma 34, we have

|EW,Ds,S [L′(W )]− EW [L(W )]|

=

∣∣∣∣∣ 1

m

m∑
i=1

1

n

n∑
j=1

EW,Di,Zij [`(fW (Xi
j), Y

i
j )]

− EW,D,Z [`(fW (X), Y )]

∣∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣∣EW,Di,Zij [`(fW (Xi
j), Y

i
j )]

− EW,D,Z [`(fW (X), Y )]

∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

√
M2

2
KL
(
PW,Di,Zij

∥∥∥PWPDi,Zij).
Notice that for any D ∈ Ds and Z ∈ SD,

KL(PW,D,Z ‖PWPD,Z) = EW,D,Z
[
log

PW,D,Z
PWPD,Z

]
= I(W ;D,Z)

= I(W ;D) + I(W ;Z|D).

Combining our results above, we then get

|EW,Ds,S [L′(W )]− EW [L(W )]|

≤ 1

mn

m∑
i=1

n∑
j=1

√
M2

2
(I(W ;Di) + I(W ;Zij |Di))

≤ 1

mn

m∑
i=1

n∑
j=1

(√
M2

2
I(W ;Di) +

√
M2

2
I(W ;Zij |Di)

)

=
1

m

m∑
i=1

√
M2

2
I(W ;Di)

+
1

mn

m∑
i=1

n∑
j=1

√
M2

2
I(W ;Zij |Di).

Similarly, we have

EW,S
[
(L′(W )− EW [L(W )])2

]
= EW,S


 1

m

m∑
i=1

1

n

n∑
j=1

`(fW (Xi
j), Y

i
j )− EW [L(W )]

2


=
M2

mn
(I(W ;S) + log 3).

This further implies by Lemma 31 that

P{|EW,Ds,S [L′(W )]− EW [L(W )]| ≥ ε}

≤ M2

mnε2
(I(W ;S) + log 3),

which completes the proof.

Proof of Theorem 23. Recall that in the proof of Theorem 22,
we have

|EW,Ds,S [L′(W )]− EW [L(W )]|

≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣EW,Di,Zij [`(fW (Xi
j), Y

i
j )]

− EW,D,Z [`(fW (X), Y )]
∣∣∣

≤ 1

mn

m∑
i=1

n∑
j=1

∣∣∣EW,Di,Zij [`(fW (Xi
j), Y

i
j )]

− EW,Di,Z [`(fW (X), Y )]
∣∣∣

+
1

mn

m∑
i=1

n∑
j=1

∣∣∣EW,Di,Z [`(fW (X), Y )]

− EW,D,Z [`(fW (X), Y )]
∣∣∣

≤ 1

mn

m∑
i=1

n∑
j=1

EDi,Zij
∣∣∣EW |Di,Zij [`(fW (Xi

j), Y
i
j )]

− EW |Di [`(fW (Xi
j), Y

i
j )]
∣∣∣

+
1

mn

m∑
i=1

n∑
j=1

EDi
∣∣EW |Di [LDi(W )]− EW [LDi(W )]

∣∣
≤ β′

mn

m∑
i=1

n∑
j=1

(
EDi,Zij [W(PW |Di,Zij , PW |Di)]

+ EDi [W(PW |Di , PW )]
)

=
β′

m

m∑
i=1

EDi [W(PW |Di , PW )]
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+
β′

mn

m∑
i=1

n∑
j=1

EDi,Zij [W(PW |Di,Zij , PW |Di)],

where the last inequality is by applying Lemma 38. The proof
is complete.

Proof of Theorem 24. For any D ∈ Ds, let D̄ be an indepen-
dent copy of D. LD(W ) ∈ [0,M ] and is thus M

2 -subGaussian.
By applying Lemma 37 with X = LD̄(W ), we have that for
any λ ∈ [0, 1),

EW,D̄
[
e

2λ(L(W )−LD̄(W ))2

M2

]
≤ 1√

1− λ
.

Next, by applying Lemma 36 with X = W , Y = D and
f(W,D) = 2λ(L(W )−LD(W ))2

M2 , we obtain that with probability
at least 1− δ,

2λ(L(W )− LD̄(W ))2

M2
≤ logEW,D̄

e 2λ(L(W )−LD̄(W ))2

M2

δ


+ ı(W ;D)

≤ log
1

δ
√

1− λ
+ ı(W ;D).

Rearranging the terms above, with probability at least 1− δ,

|L(W )− LD(W )| ≤

√
M2

2λ

(
ı(W ;D) + log

1

δ
√

1− λ

)
.

Taking the union bound over every D ∈ Ds, we have that
with probability at least 1− δ,

|L(W )− Ls(W )| ≤ 1

m

m∑
i=1

|L(W )− LDi(W )|

≤ 1

m

m∑
i=1

√
M2

2λ

(
ı(W ;Di) + log

m

δ
√

1− λ

)
.

Proof of Theorem 25. By applying Lemma 37 with X =
`(fw(X), Y ), we have that for any λ ∈ [0, 1),

EZ
[
e
λ(L(w)−`(fw(X),Y ))2

2σ2

]
≤ 1√

1− λ
.

Next, for any D ∈ Dt, by applying Lemma 35 with X = Z,
Y = D and f(Z,D) = λ(L(w)−`(fw(X),Y ))2

2σ2 , we have that
with probability at least 1− δ,

EZ|D
[
λ(L(w)− `(fw(X), Y ))2

2σ2

]

≤ logEZ,D̄

eλ(L(w)−`(fw(X),Y ))2

2σ2

δ

+ KL(PZ|D ‖PZ)

≤ log
1

δ
√

1− λ
+ KL(PZ|D ‖PZ).

Finally, by applying Jensen’s inequality, we obtain that with
probability at least 1− δ,

|L(w)− LD(w)| = EZ|D
√

(L(w)− `(fw(X), Y ))2

≤
√
EZ|D[L(w)− `(fw(X), Y )]2

≤

√
2σ2

λ

(
KL(PZ|D ‖PZ) + log

1

δ
√

1− λ

)
.

Taking the union bound over every D ∈ Dt, we have that with
probability at least 1− δ,

|L(w)− Lt(w)| ≤ 1

m′

m′∑
k=1

∣∣∣L(w)− LD′k(w)
∣∣∣

≤ 1

m′

m′∑
k=1

√
2σ2

λ

(
KL
(
PZ|D′k

∥∥∥PZ)+ log
m′

δ
√

1− λ

)
.

APPENDIX C
EXPERIMENT DETAILS

In this paper, deep learning models are trained with an Intel
Xeon CPU (2.10GHz, 48 cores), 256GB memory, and 4 Nvidia
Tesla V100 GPUs (32GB).

A. Colored MNIST

The Colored MNIST dataset is a binary classification task
introduced by IRM [9]. The main difference between Colored
MNIST and the original MNIST dataset is the manually
introduced strong correlation between the label and image col-
ors. Colored MNIST is generated according to the following
procedure:

• Give each sample an initial label by whether the digit is
greater than 4 (i.e. label 0 for 0-4 digits and label 1 for
5-9 digits.

• Randomly flip the label with probability 0.25, so an
oracle predictor that fully relies on the shape of the digits
would achieve a 75% accuracy.

• Each domain is assigned a probability Pe, which char-
acterizes the correlation between the label and the color:
samples with label 0 have Pe chance to be red, and 1−Pe
chance to be green, while samples with label 1 have Pe
chance to be green, and 1− Pe chance to be red.

The original domain setting of [9] includes two source do-
mains Ds = {P1 = 90%, P2 = 80%}, such that the predictive
power of the color superiors that of the actual digits. This cor-
relation is reversed in the target domain Dt = {P3 = 10%},
thus fooling algorithms without causality inference abilities
to overfit the color features and generalize poorly on target
domains.

The original implementation2 uses a 3-layer MLP network
with ReLU activation. The model is trained for 501 epochs
in a full gradient descent scheme, such that the batch size
equals the number of training samples 25, 000. We follow the
hyper-parameter selection strategy of [9] through a random
search over 50 independent trials, as reported in Table III
along with the parameters selected for IDM. Considering that
the covariate shift is not prominent according to the dataset
construction procedure, we only apply gradient alignment
without feature alignment in this experiment.

2https://github.com/facebookresearch/InvariantRiskMinimization
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TABLE III
THE HYPER-PARAMETERS OF COLORED MNIST.

Parameter Random Distribution Selected Value

dimension of hidden layer 2Uniform(6,9) 433

weight decay 10Uniform(−2,−5) 0.00034

learning rate 10Uniform(−2.5,−3.5) 0.000449
warmup iterations Uniform(50, 250) 154

regularization strength 10Uniform(4,8) 2888595.180638

B. DomainBed Benchmark

DomainBed [21] is an extensive benchmark for both DA
and DG algorithms, which involves various synthetic and real-
world datasets mainly focusing on image classification:
• Colored MNIST [9] is a variant of the MNIST dataset.

As discussed previously, Colored MNIST includes 3 do-
mains {90%, 80%, 10%}, 70, 000 samples of dimension
(2, 28, 28) and 2 classes.

• Rotated MNIST [65] is a variant of the MNIST dataset
with 7 domains {0, 15, 30, 45, 60, 75} representing the
rotation degrees, 70, 000 samples of dimension (28, 28)
and 10 classes.

• VLCS [66] includes 4 domains
{Caltech101,LabelMe,SUN09,VOC2007}, 10, 729
samples of dimension (3, 224, 224) and 5 classes.

• PACS [67] includes 4 domains
{art, cartoons,photos, sketches}, 9, 991 samples
of dimension (3, 224, 224) and 7 classes.

• OfficeHome [68] includes 4 domains
{art, clipart,product, real}, 15, 588 samples of
dimension (3, 224, 224) and 65 classes.

• TerraIncognita [69] includes 4 domains
{L100,L38,L43, 46} representing locations of
photographs, 24, 788 samples of dimension (3, 224, 224)
and 10 classes.

• DomainNet [70] includes 6 domains
{clipart, infograph,painting, quickdraw, real, sketch},
586, 575 samples of dimension (3, 224, 224) and 345
classes.

We list all competitive DG approaches below. Note that
some recent progress is omitted [16], [71]–[75], which either
contributes complementary approaches, does not report full
DomainBed results, or does not report the target-domain
validation scores. Due to the limitation of computational
resources, we are not able to reproduce the full results of these
works on DomainBed.
• ERM: Empirical Risk Minimization.
• IRM: Invariant Risk Minimization [9].
• GroupDRO: Group Distributionally Robust Optimization

[14].
• Mixup: Interdomain Mixup [76].
• MLDG: Meta Learning Domain Generalization [77].
• CORAL: Deep CORAL [5].
• MMD: Maximum Mean Discrepancy [6].
• DANN: Domain Adversarial Neural Network [7].
• CDANN: Conditional Domain Adversarial Neural Net-

work [8].

• MTL: Marginal Transfer Learning [17].
• SagNet: Style Agnostic Networks [78].
• ARM: Adaptive Risk Minimization [18].
• V-REx: Variance Risk Extrapolation [15].
• RSC: Representation Self-Challenging [79].
• AND-mask: Learning Explanations that are Hard to Vary

[20].
• SAND-mask: Smoothed-AND mask [47].
• Fish: Gradient Matching for Domain Generalization [12].
• Fishr: Invariant Gradient Variances for Out-of-distribution

Generalization [13].
• SelfReg: Self-supervised Contrastive Regularization [80].
• CausIRL: Invariant Causal Mechanisms through Distri-

bution Matching [10].
The same fine-tuning procedure is applied to all approaches:

The network is a multi-layer CNN for synthetic MNIST
datasets and is a pre-trained ResNet-50 for other real-world
datasets. The hyper-parameters are selected by a random
search over 20 independent trials for each target domain, and
each evaluation score is reported after 3 runs with different
initialization seeds3. The hyper-parameter selection criteria
are shown in Table IV. Note that warmup iterations and
moving average techniques are not adopted for representation
alignment.

Note that although the same Colored MNIST dataset is
adopted by DomainBed, the experimental settings are com-
pletely different from the previous one [9]. The main dif-
ference is the batch size (25000 for IRM, less than 512 for
DomainBed), making it much harder to learn invariance for
causality inference and distribution matching methods since
fewer samples are available for probability density estimation.
This explains the huge performance drop between these two
experiments using the same DG algorithms.

APPENDIX D
ADDITIONAL EXPERIMENTAL RESULTS

A. Component Analysis

In this section, we conduct ablation studies to demonstrate
the effect of each component of the proposed IDM algorithm.
Specifically, we analyze the effect of gradient alignment (GA),
representation alignment (RA), warmup iterations (WU), mov-
ing average (MA), and the proposed PDM method for distri-
bution matching.

1) Gradient Alignment: According to our theoretical anal-
ysis, gradient alignment promotes source-domain generaliza-
tion, especially when concept shift is prominent. As can be
seen in Table V, IDM without gradient alignment (57.7%)
performs similarly to ERM (57.8%), which is unable to learn
invariance across source domains. Gradient alignment also sig-
nificantly boosts the performance on VLCS (77.4% to 78.1%)
and PACS (86.8% to 87.6%), as seen in Table VII and VIII.
However, for datasets where concept shift is not prominent e.g.
OfficeHome, gradient alignment cannot help to improve per-
formance as shown in Table VI. It is worth noting that gradient
alignment also penalizes a lower bound for the representation

3https://github.com/facebookresearch/DomainBed
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TABLE IV
THE HYPER-PARAMETERS OF DOMAINBED.

Condition Parameter Default Value Random Distribution

MNIST Datasets learning rate 0.001 10Uniform(−4.5,−3.5)

batch size 64 2Uniform(3,9)

Real-world Datasets

learning rate 0.00005 10Uniform(−5,−3.5)

batch size 32 2Uniform(3,5) (DomainNet) / 2Uniform(3,5.5) (others)
weight decay 0 10Uniform(−6,−2)

dropout 0 Uniform({0, 0.1, 0.5})
- steps 5000 5000

IDM

gradient penalty 1000 10Uniform(1,5)

gradient warmup 1500 Uniform(0, 5000)

representation penalty 1 10Uniform(−1,1)

moving average 0.95 Uniform(0.9, 0.99)

TABLE V
COMPONENT ANALYSIS ON COLOREDMNIST OF DOMAINBED.

Algorithm GA RA WU MA 90% 80% 10% Average

ERM - 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8

IDM

7 3 7 7 71.9 ± 0.4 72.5 ± 0.0 28.8 ± 0.7 57.7
3 7 3 3 73.1 ± 0.2 72.7 ± 0.3 67.4 ± 1.6 71.1
3 3 7 3 72.9 ± 0.2 72.7 ± 0.1 60.8 ± 2.1 68.8
3 3 3 7 72.0 ± 0.1 71.5 ± 0.3 48.7 ± 7.1 64.0

3 3 3 3 74.2 ± 0.6 73.5 ± 0.2 68.3 ± 2.5 72.0

TABLE VI
COMPONENT ANALYSIS ON OFFICEHOME OF DOMAINBED.

Algorithm GA RA WU MA A C P R Average

ERM - 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4

IDM

7 3 7 7 64.7 ± 0.5 54.6 ± 0.3 76.2 ± 0.4 78.1 ± 0.5 68.4
3 7 3 3 61.9 ± 0.4 53.0 ± 0.3 75.5 ± 0.2 77.9 ± 0.2 67.1
3 3 7 3 62.5 ± 0.1 53.0 ± 0.7 75.0 ± 0.4 77.2 ± 0.7 66.9
3 3 3 7 64.2 ± 0.3 53.5 ± 0.6 76.1 ± 0.4 78.1 ± 0.4 68.0

3 3 3 3 64.4 ± 0.3 54.4 ± 0.6 76.5 ± 0.3 78.0 ± 0.4 68.3

space distribution shift: In the t-th step of gradient descent, the
Markov chain relationship Di → Bit → (Rit, Y

i
t )→ Git holds

conditioned on the current predictor Wt−1, which implies
the lower bound I(Git;Di|Wt−1) ≤ I(Rit, Y

i
t ;Di|Wt−1) by

the data processing inequality. This indicates that gradient
alignment also helps to address the covariate shift, which
explains the promising performance of gradient-based DG
algorithms e.g. Fish and Fishr. However, since this is a lower
bound rather than an upper bound, gradient manipulation is
insufficient to fully address representation space covariate
shifts, as seen in the following analysis for representation
alignment.

2) Representation Alignment: Representation alignment
promotes target-domain generalization by minimizing the rep-
resentation level covariate shift. As shown in Table V - IX,
representation alignment is effective in OfficeHome (67.1%
to 68.3%) and RotatedMNIST (97.8% to 98.0%), and still
enhances the performance even though covariate shift is not

prominent in ColoredMNIST (71.1% to 72.0%). This verifies
our claim that representation alignment complements gradient
alignment in solving Problem 6, and is necessary for achieving
high-probability DG.

3) Warmup Iterations: Following the experimental settings
of [9], [13], we do not apply the penalties of gradient or
representation alignment until the number of epochs reaches
a certain value. This is inspired by the observation that
forcing invariance in early steps may hinder the models from
extracting useful correlations. By incorporating these warmup
iterations, predictors are allowed to extract all possible cor-
relations between the inputs and the labels at the beginning,
and then discard spurious ones in later updates. As can be
seen in Table V and VI, this strategy helps to enhance the
final performances on ColoredMNIST (68.8% to 72.0%) and
OfficeHome (66.9% to 68.3%).

4) Moving Average: Following [13], [81], we use an expo-
nential moving average when computing the gradients or the
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TABLE VII
EFFECT OF GRADIENT ALIGNMENT (GA) ON VLCS OF DOMAINBED.

Algorithm GA A C P S Average

ERM - 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6
IDM 7 97.1 ± 0.7 67.2 ± 0.4 69.9 ± 0.4 75.6 ± 0.8 77.4
IDM 3 97.6 ± 0.3 66.9 ± 0.3 71.8 ± 0.5 76.0 ± 1.3 78.1

TABLE VIII
EFFECT OF GRADIENT ALIGNMENT (GA) ON PACS OF DOMAINBED.

Algorithm GA A C P S Average

ERM - 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IDM 7 87.8 ± 0.6 81.6 ± 0.3 97.4 ± 0.2 80.6 ± 1.3 86.8
IDM 3 88.0 ± 0.3 82.6 ± 0.6 97.6 ± 0.4 82.3 ± 0.6 87.6

TABLE IX
EFFECT OF REPRESENTATION ALIGNMENT (RA) ON ROTATEDMNIST OF DOMAINBED.

Algorithm RA 0 15 30 45 60 75 Average

ERM - 95.3 ± 0.2 98.7 ± 0.1 98.9 ± 0.1 98.7 ± 0.2 98.9 ± 0.0 96.2 ± 0.2 97.8
IDM 7 95.6 ± 0.1 98.4 ± 0.1 98.7 ± 0.2 99.1 ± 0.0 98.7 ± 0.1 96.6 ± 0.4 97.8
IDM 3 96.1 ± 0.3 98.7 ± 0.1 99.1 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.6 ± 0.1 98.0

representations. This strategy helps when the batch size is not
sufficiently large to sketch the probability distributions. In the
IRM experiment setup where the batch size is 25000, Fishr
(70.2%) and IDM (70.5%) both easily achieve near-optimal
accuracy compared to Oracle (71.0%). In the DomainBed
setup, the batch size 2Uniform(3,9) is significantly diminished,
resulting in worse target-domain accuracy of Fishr (68.8%).
As shown in Table V and VI, this moving average strategy
greatly enhances the performance of IDM on ColoredMNIST
(64.0% to 72.0%) and OfficeHome (68.0% to 68.3%).

5) PDM for Distribution Matching: We then demonstrate
the superiority of our PDM method over moment-based dis-
tribution alignment techniques. Specifically, we compare IGA
[11] which matches the empirical expectation of the gradients,
Fishr [13] which proposes to align the gradient variance, the
combination of IGA + Fishr (i.e. aligning the expectation
and variance simultaneously), and our approach IDM (without
representation space alignment). The performance gain of IDM
on the Colored MNIST task in [9] is not significant, since
it is relatively easier to learn invariance with a large batch
size (25000). In the DomainBed setting, the batch size is
significantly reduced (8-512), making this learning task much
harder. The results are reported in Table X.

TABLE X
SUPERIORITY OF PDM ON COLORED MNIST OF DOMAINBED.

Algorithm 90% 80% 10% Average

ERM 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8
IGA 72.6 ± 0.3 72.9 ± 0.2 50.0 ± 1.2 65.2
Fishr 74.1 ± 0.6 73.3 ± 0.1 58.9 ± 3.7 68.8
IGA + Fishr 73.3 ± 0.0 72.6 ± 0.5 66.3 ± 2.9 70.7

IDM 74.2 ± 0.6 73.5 ± 0.2 68.3 ± 2.5 72.0

As can be seen, IDM achieves significantly higher per-
formance on Colored MNIST (72.0%) even compared to
the combination of IGA + Fishr (70.7%). This verifies our
conclusion that matching the expectation and the variance
is not sufficient for complex probability distributions, and
demonstrates the superiority of the proposed PDM method for
distribution alignment.

B. Running Time Comparison

Since IDM only stores historical gradients and representa-
tions for a single batch from each source domain, the storage
and computation overhead is marginal compared to training
the entire network. As shown in Table XI, the training time is
only 5% longer compared to ERM on the largest DomainNet
dataset.

C. Full DomainBed Results

In this paper, we focus on the target-domain model selection
criterion, where the validation set follows the same distribution
as the target domains. Our choice is well-motivated for the
following reasons:
• Target-domain validation is provided by the DomainBed

benchmark as one of the default model-selection methods,
and is also widely adopted in the literature in many
significant works like IRM [9], V-Rex [15], and Fishr
[13].

• As suggested by Proposition 7, any algorithm that fits
well on source domains will suffer from strictly positive
risks in target domains once concept shift is induced.
Therefore, source-domain validation would result in sub-
optimal selection results.

• Source-domain validation may render efforts to address
concept shift useless, as spurious features are often more
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TABLE XI
COMPUTATIONAL OVERHEAD OF IDM USING DEFAULT BATCH SIZE.

Dataset Training Time (h) Memory Requirement (GB)

ERM IDM Overhead ERM IDM Overhead

ColoredMNIST 0.076 0.088 14.6% 0.138 0.139 0.2%
RotatedMNIST 0.101 0.110 9.3% 0.338 0.342 1.0%
VLCS 0.730 0.744 2.0% 8.189 8.199 0.1%
PACS 0.584 0.593 1.5% 8.189 8.201 0.1%
OfficeHome 0.690 0.710 2.9% 8.191 8.506 3.8%
TerraIncognita 0.829 0.840 1.3% 8.189 8.208 0.2%
DomainNet 2.805 2.947 5.0% 13.406 16.497 23.1%

predictive than invariant ones. This is particularly unfair
for algorithms that aim to tackle the concept shift. As
shown in Table 9 in [13], no algorithm can signifi-
cantly outperform ERM on Colored MNIST using source-
domain validation (an exception is ARM which uses test-
time adaptation, and thus cannot be directly compared),
even though ERM is shown to perform much worse than
random guessing (10% v.s. 50% accuracy) for the last
domain (see Table 1 in [9] and Appendix D.4.1 in [13]).
As a result, models selected by source-domain validation
may not generalize well when concept shift is substantial.

• As mentioned by [82], source-domain validation suffers
from underspecification, where predictors with equiva-
lently strong performances in source domains may behave
very differently during testing. It is also emphasized by
[83] that OOD performance cannot, by definition, be
performed with a validation set from the same distribution
as the training data. This further raises concerns about the
validity of using source-domain accuracies for validation
purposes.

• Moreover, target-domain validation is also applicable in
practice, as it is feasible to label a few target-domain
samples for validation purposes. It is also unrealistic to
deploy models in target domains without any form of
verification, making such efforts necessary in practice.

Due to the reasons listed above, we believe that the target-
domain validation results are sufficient to demonstrate the
effectiveness of our approach in real-world learning scenarios.
We report detailed results of IDM for each domain in each
dataset of the DomainBed benchmark under target-domain
model selection for a complete evaluation in Table XII - XVIII.
Note that detailed scores of certain algorithms (Fish, CausIRL)
are not available.
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TABLE XIII
DETAILED RESULTS ON ROTATED MNIST IN DOMAINBED.

Algorithm 0 15 30 45 60 75 Average

ERM 95.3 ± 0.2 98.7 ± 0.1 98.9 ± 0.1 98.7 ± 0.2 98.9 ± 0.0 96.2 ± 0.2 97.8
IRM 94.9 ± 0.6 98.7 ± 0.2 98.6 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 95.2 ± 0.3 97.5
GroupDRO 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 98.6 ± 0.1 96.3 ± 0.4 97.9
Mixup 95.8 ± 0.3 98.7 ± 0.0 99.0 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 96.6 ± 0.2 98.0
MLDG 95.7 ± 0.2 98.9 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 95.8 ± 0.4 97.8
CORAL 96.2 ± 0.2 98.8 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 96.4 ± 0.2 98.0
MMD 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 96.4 ± 0.2 98.0
DANN 95.9 ± 0.1 98.9 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 98.9 ± 0.0 96.3 ± 0.3 97.9
CDANN 95.9 ± 0.2 98.8 ± 0.0 98.7 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 96.1 ± 0.3 97.9
MTL 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.7 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9
SagNet 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 98.8 ± 0.1 96.3 ± 0.1 97.9
ARM 95.9 ± 0.4 99.0 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 99.1 ± 0.1 96.7 ± 0.2 98.1
V-REx 95.5 ± 0.2 99.0 ± 0.0 98.7 ± 0.2 98.8 ± 0.1 98.8 ± 0.0 96.4 ± 0.0 97.9
RSC 95.4 ± 0.1 98.6 ± 0.1 98.6 ± 0.1 98.9 ± 0.0 98.8 ± 0.1 95.4 ± 0.3 97.6
AND-mask 94.9 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 98.7 ± 0.2 98.6 ± 0.2 95.5 ± 0.2 97.5
SAND-mask 94.7 ± 0.2 98.5 ± 0.2 98.6 ± 0.1 98.6 ± 0.1 98.5 ± 0.1 95.2 ± 0.1 97.4
Fishr 95.8 ± 0.1 98.3 ± 0.1 98.8 ± 0.1 98.6 ± 0.3 98.7 ± 0.1 96.5 ± 0.1 97.8
SelfReg 96.0 ± 0.3 98.9 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.8 ± 0.1 98.1

IDM 96.1 ± 0.3 98.7 ± 0.1 99.1 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.6 ± 0.1 98.0

TABLE XIV
DETAILED RESULTS ON VLCS IN DOMAINBED.

Algorithm C L S V Average

ERM 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6
IRM 97.3 ± 0.2 66.7 ± 0.1 71.0 ± 2.3 72.8 ± 0.4 76.9
GroupDRO 97.7 ± 0.2 65.9 ± 0.2 72.8 ± 0.8 73.4 ± 1.3 77.4
Mixup 97.8 ± 0.4 67.2 ± 0.4 71.5 ± 0.2 75.7 ± 0.6 78.1
MLDG 97.1 ± 0.5 66.6 ± 0.5 71.5 ± 0.1 75.0 ± 0.9 77.5
CORAL 97.3 ± 0.2 67.5 ± 0.6 71.6 ± 0.6 74.5 ± 0.0 77.7
MMD 98.8 ± 0.0 66.4 ± 0.4 70.8 ± 0.5 75.6 ± 0.4 77.9
DANN 99.0 ± 0.2 66.3 ± 1.2 73.4 ± 1.4 80.1 ± 0.5 79.7
CDANN 98.2 ± 0.1 68.8 ± 0.5 74.3 ± 0.6 78.1 ± 0.5 79.9
MTL 97.9 ± 0.7 66.1 ± 0.7 72.0 ± 0.4 74.9 ± 1.1 77.7
SagNet 97.4 ± 0.3 66.4 ± 0.4 71.6 ± 0.1 75.0 ± 0.8 77.6
ARM 97.6 ± 0.6 66.5 ± 0.3 72.7 ± 0.6 74.4 ± 0.7 77.8
V-REx 98.4 ± 0.2 66.4 ± 0.7 72.8 ± 0.1 75.0 ± 1.4 78.1
RSC 98.0 ± 0.4 67.2 ± 0.3 70.3 ± 1.3 75.6 ± 0.4 77.8
AND-mask 98.3 ± 0.3 64.5 ± 0.2 69.3 ± 1.3 73.4 ± 1.3 76.4
SAND-mask 97.6 ± 0.3 64.5 ± 0.6 69.7 ± 0.6 73.0 ± 1.2 76.2
Fishr 97.6 ± 0.7 67.3 ± 0.5 72.2 ± 0.9 75.7 ± 0.3 78.2
SelfReg 97.9 ± 0.4 66.7 ± 0.1 73.5 ± 0.7 74.7 ± 0.7 78.2

IDM 97.6 ± 0.3 66.9 ± 0.3 71.8 ± 0.5 76.0 ± 1.3 78.1
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TABLE XV
DETAILED RESULTS ON PACS IN DOMAINBED.

Algorithm A C P S Average

ERM 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IRM 84.2 ± 0.9 79.7 ± 1.5 95.9 ± 0.4 78.3 ± 2.1 84.5
GroupDRO 87.5 ± 0.5 82.9 ± 0.6 97.1 ± 0.3 81.1 ± 1.2 87.1
Mixup 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8
MLDG 87.0 ± 1.2 82.5 ± 0.9 96.7 ± 0.3 81.2 ± 0.6 86.8
CORAL 86.6 ± 0.8 81.8 ± 0.9 97.1 ± 0.5 82.7 ± 0.6 87.1
MMD 88.1 ± 0.8 82.6 ± 0.7 97.1 ± 0.5 81.2 ± 1.2 87.2
DANN 87.0 ± 0.4 80.3 ± 0.6 96.8 ± 0.3 76.9 ± 1.1 85.2
CDANN 87.7 ± 0.6 80.7 ± 1.2 97.3 ± 0.4 77.6 ± 1.5 85.8
MTL 87.0 ± 0.2 82.7 ± 0.8 96.5 ± 0.7 80.5 ± 0.8 86.7
SagNet 87.4 ± 0.5 81.2 ± 1.2 96.3 ± 0.8 80.7 ± 1.1 86.4
ARM 85.0 ± 1.2 81.4 ± 0.2 95.9 ± 0.3 80.9 ± 0.5 85.8
V-REx 87.8 ± 1.2 81.8 ± 0.7 97.4 ± 0.2 82.1 ± 0.7 87.2
RSC 86.0 ± 0.7 81.8 ± 0.9 96.8 ± 0.7 80.4 ± 0.5 86.2
AND-mask 86.4 ± 1.1 80.8 ± 0.9 97.1 ± 0.2 81.3 ± 1.1 86.4
SAND-mask 86.1 ± 0.6 80.3 ± 1.0 97.1 ± 0.3 80.0 ± 1.3 85.9
Fishr 87.9 ± 0.6 80.8 ± 0.5 97.9 ± 0.4 81.1 ± 0.8 86.9
SelfReg 87.5 ± 0.1 83.0 ± 0.1 97.6 ± 0.1 82.8 ± 0.2 87.7

IDM 88.0 ± 0.3 82.6 ± 0.6 97.6 ± 0.4 82.3 ± 0.6 87.6

TABLE XVI
DETAILED RESULTS ON OFFICEHOME IN DOMAINBED.

Algorithm A C P R Average

ERM 61.7 ± 0.7 53.4 ± 0.3 74.1 ± 0.4 76.2 ± 0.6 66.4
IRM 56.4 ± 3.2 51.2 ± 2.3 71.7 ± 2.7 72.7 ± 2.7 63.0
GroupDRO 60.5 ± 1.6 53.1 ± 0.3 75.5 ± 0.3 75.9 ± 0.7 66.2
Mixup 63.5 ± 0.2 54.6 ± 0.4 76.0 ± 0.3 78.0 ± 0.7 68.0
MLDG 60.5 ± 0.7 54.2 ± 0.5 75.0 ± 0.2 76.7 ± 0.5 66.6
CORAL 64.8 ± 0.8 54.1 ± 0.9 76.5 ± 0.4 78.2 ± 0.4 68.4
MMD 60.4 ± 1.0 53.4 ± 0.5 74.9 ± 0.1 76.1 ± 0.7 66.2
DANN 60.6 ± 1.4 51.8 ± 0.7 73.4 ± 0.5 75.5 ± 0.9 65.3
CDANN 57.9 ± 0.2 52.1 ± 1.2 74.9 ± 0.7 76.2 ± 0.2 65.3
MTL 60.7 ± 0.8 53.5 ± 1.3 75.2 ± 0.6 76.6 ± 0.6 66.5
SagNet 62.7 ± 0.5 53.6 ± 0.5 76.0 ± 0.3 77.8 ± 0.1 67.5
ARM 58.8 ± 0.5 51.8 ± 0.7 74.0 ± 0.1 74.4 ± 0.2 64.8
V-REx 59.6 ± 1.0 53.3 ± 0.3 73.2 ± 0.5 76.6 ± 0.4 65.7
RSC 61.7 ± 0.8 53.0 ± 0.9 74.8 ± 0.8 76.3 ± 0.5 66.5
AND-mask 60.3 ± 0.5 52.3 ± 0.6 75.1 ± 0.2 76.6 ± 0.3 66.1
SAND-mask 59.9 ± 0.7 53.6 ± 0.8 74.3 ± 0.4 75.8 ± 0.5 65.9
Fishr 63.4 ± 0.8 54.2 ± 0.3 76.4 ± 0.3 78.5 ± 0.2 68.2
SelfReg 64.2 ± 0.6 53.6 ± 0.7 76.7 ± 0.3 77.9 ± 0.5 68.1

IDM 64.4 ± 0.3 54.4 ± 0.6 76.5 ± 0.3 78.0 ± 0.4 68.3
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TABLE XVII
DETAILED RESULTS ON TERRAINCOGNITA IN DOMAINBED.

Algorithm L100 L38 L43 L46 Average

ERM 59.4 ± 0.9 49.3 ± 0.6 60.1 ± 1.1 43.2 ± 0.5 53.0
IRM 56.5 ± 2.5 49.8 ± 1.5 57.1 ± 2.2 38.6 ± 1.0 50.5
GroupDRO 60.4 ± 1.5 48.3 ± 0.4 58.6 ± 0.8 42.2 ± 0.8 52.4
Mixup 67.6 ± 1.8 51.0 ± 1.3 59.0 ± 0.0 40.0 ± 1.1 54.4
MLDG 59.2 ± 0.1 49.0 ± 0.9 58.4 ± 0.9 41.4 ± 1.0 52.0
CORAL 60.4 ± 0.9 47.2 ± 0.5 59.3 ± 0.4 44.4 ± 0.4 52.8
MMD 60.6 ± 1.1 45.9 ± 0.3 57.8 ± 0.5 43.8 ± 1.2 52.0
DANN 55.2 ± 1.9 47.0 ± 0.7 57.2 ± 0.9 42.9 ± 0.9 50.6
CDANN 56.3 ± 2.0 47.1 ± 0.9 57.2 ± 1.1 42.4 ± 0.8 50.8
MTL 58.4 ± 2.1 48.4 ± 0.8 58.9 ± 0.6 43.0 ± 1.3 52.2
SagNet 56.4 ± 1.9 50.5 ± 2.3 59.1 ± 0.5 44.1 ± 0.6 52.5
ARM 60.1 ± 1.5 48.3 ± 1.6 55.3 ± 0.6 40.9 ± 1.1 51.2
V-REx 56.8 ± 1.7 46.5 ± 0.5 58.4 ± 0.3 43.8 ± 0.3 51.4
RSC 59.9 ± 1.4 46.7 ± 0.4 57.8 ± 0.5 44.3 ± 0.6 52.1
AND-mask 54.7 ± 1.8 48.4 ± 0.5 55.1 ± 0.5 41.3 ± 0.6 49.8
SAND-mask 56.2 ± 1.8 46.3 ± 0.3 55.8 ± 0.4 42.6 ± 1.2 50.2
Fishr 60.4 ± 0.9 50.3 ± 0.3 58.8 ± 0.5 44.9 ± 0.5 53.6
SelfReg 60.0 ± 2.3 48.8 ± 1.0 58.6 ± 0.8 44.0 ± 0.6 52.8

IDM 60.1 ± 1.4 48.8 ± 1.9 57.9 ± 0.2 44.3 ± 1.2 52.8

TABLE XVIII
DETAILED RESULTS ON DOMAINNET IN DOMAINBED.

Algorithm clip info paint quick real sketch Average

ERM 58.6 ± 0.3 19.2 ± 0.2 47.0 ± 0.3 13.2 ± 0.2 59.9 ± 0.3 49.8 ± 0.4 41.3
IRM 40.4 ± 6.6 12.1 ± 2.7 31.4 ± 5.7 9.8 ± 1.2 37.7 ± 9.0 36.7 ± 5.3 28.0
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 34.2 ± 0.3 9.2 ± 0.4 51.9 ± 0.5 40.1 ± 0.6 33.4
Mixup 55.6 ± 0.1 18.7 ± 0.4 45.1 ± 0.5 12.8 ± 0.3 57.6 ± 0.5 48.2 ± 0.4 39.6
MLDG 59.3 ± 0.1 19.6 ± 0.2 46.8 ± 0.2 13.4 ± 0.2 60.1 ± 0.4 50.4 ± 0.3 41.6
CORAL 59.2 ± 0.1 19.9 ± 0.2 47.4 ± 0.2 14.0 ± 0.4 59.8 ± 0.2 50.4 ± 0.4 41.8
MMD 32.2 ± 13.3 11.2 ± 4.5 26.8 ± 11.3 8.8 ± 2.2 32.7 ± 13.8 29.0 ± 11.8 23.5
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.9 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 44.2 ± 0.7 12.8 ± 0.2 56.2 ± 0.4 45.9 ± 0.5 38.5
MTL 58.0 ± 0.4 19.2 ± 0.2 46.2 ± 0.1 12.7 ± 0.2 59.9 ± 0.1 49.0 ± 0.0 40.8
SagNet 57.7 ± 0.3 19.1 ± 0.1 46.3 ± 0.5 13.5 ± 0.4 58.9 ± 0.4 49.5 ± 0.2 40.8
ARM 49.6 ± 0.4 16.5 ± 0.3 41.5 ± 0.8 10.8 ± 0.1 53.5 ± 0.3 43.9 ± 0.4 36.0
V-REx 43.3 ± 4.5 14.1 ± 1.8 32.5 ± 5.0 9.8 ± 1.1 43.5 ± 5.6 37.7 ± 4.5 30.1
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.5 ± 0.1 55.7 ± 0.7 47.8 ± 0.9 38.9
AND-mask 52.3 ± 0.8 17.3 ± 0.5 43.7 ± 1.1 12.3 ± 0.4 55.8 ± 0.4 46.1 ± 0.8 37.9
SAND-mask 43.8 ± 1.3 15.2 ± 0.2 38.2 ± 0.6 9.0 ± 0.2 47.1 ± 1.1 39.9 ± 0.6 32.2
Fishr 58.3 ± 0.5 20.2 ± 0.2 47.9 ± 0.2 13.6 ± 0.3 60.5 ± 0.3 50.5 ± 0.3 41.8
SelfReg 60.7 ± 0.1 21.6 ± 0.1 49.5 ± 0.1 14.2 ± 0.3 60.7 ± 0.1 51.7 ± 0.1 43.1

IDM 58.8 ± 0.3 20.7 ± 0.2 48.3 ± 0.1 13.7 ± 0.4 59.1 ± 0.1 50.2 ± 0.3 41.8
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[54] M. Federici, A. Dutta, P. Forré, N. Kushman, and Z. Akata, “Learning
robust representations via multi-view information bottleneck,” in Inter-
national Conference on Learning Representations, 2019.

[55] K.-H. Lee, A. Arnab, S. Guadarrama, J. Canny, and I. Fischer, “Com-
pressive visual representations,” Advances in Neural Information Pro-
cessing Systems, vol. 34, pp. 19 538–19 552, 2021.

[56] Y. Dong, T. Gong, H. Chen, S. Yu, and C. Li, “Rethinking information-
theoretic generalization: Loss entropy induced pac bounds,” in The
Twelfth International Conference on Learning Representations, 2024.

[57] A. Pensia, V. Jog, and P.-L. Loh, “Generalization error bounds for
noisy, iterative algorithms,” in 2018 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2018, pp. 546–550.

[58] H. Wang, Y. Huang, R. Gao, and F. Calmon, “Analyzing the generaliza-
tion capability of sgld using properties of gaussian channels,” Advances
in Neural Information Processing Systems, vol. 34, pp. 24 222–24 234,
2021.

[59] Q. Chen, C. Shui, and M. Marchand, “Generalization bounds for
meta-learning: An information-theoretic analysis,” Advances in Neural
Information Processing Systems, vol. 34, pp. 25 878–25 890, 2021.

[60] S. T. Jose and O. Simeone, “Information-theoretic generalization bounds
for meta-learning and applications,” Entropy, vol. 23, no. 1, p. 126, 2021.

[61] F. Hellström and G. Durisi, “Evaluated cmi bounds for meta learning:
Tightness and expressiveness,” Advances in Neural Information Process-
ing Systems, vol. 35, pp. 20 648–20 660, 2022.

[62] Y. Bu, H. V. Tetali, G. Aminian, M. Rodrigues, and G. Wornell, “On the
generalization error of meta learning for the gibbs algorithm,” in 2023
IEEE International Symposium on Information Theory (ISIT). IEEE,
2023, pp. 2488–2493.

[63] F. Hellström, G. Durisi, B. Guedj, and M. Raginsky, “Generalization
bounds: Perspectives from information theory and pac-bayes,” arXiv
preprint arXiv:2309.04381, 2023.

[64] Y. Polyanskiy and Y. Wu, Information theory: From coding to learning.
Cambridge university press, 2024.

[65] M. Ghifary, W. B. Kleijn, M. Zhang, and D. Balduzzi, “Domain
generalization for object recognition with multi-task autoencoders,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 2551–2559.

[66] C. Fang, Y. Xu, and D. N. Rockmore, “Unbiased metric learning: On the
utilization of multiple datasets and web images for softening bias,” in
Proceedings of the IEEE International Conference on Computer Vision,
2013, pp. 1657–1664.

[67] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Deeper, broader and
artier domain generalization,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 5542–5550.

[68] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan,
“Deep hashing network for unsupervised domain adaptation,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 5018–5027.

[69] S. Beery, G. Van Horn, and P. Perona, “Recognition in terra incognita,”
in Proceedings of the European conference on computer vision (ECCV),
2018, pp. 456–473.

[70] X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment
matching for multi-source domain adaptation,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019, pp. 1406–
1415.

[71] J. Cha, S. Chun, K. Lee, H.-C. Cho, S. Park, Y. Lee, and S. Park, “Swad:
Domain generalization by seeking flat minima,” Advances in Neural
Information Processing Systems, vol. 34, pp. 22 405–22 418, 2021.

[72] X. Wang, M. Saxon, J. Li, H. Zhang, K. Zhang, and W. Y. Wang, “Causal
balancing for domain generalization,” in The Eleventh International
Conference on Learning Representations, 2023.

[73] Z. Wang, J. Grigsby, and Y. Qi, “PGrad: Learning principal gradients
for domain generalization,” in The Eleventh International Conference
on Learning Representations, 2023.

[74] A. Setlur, D. Dennis, B. Eysenbach, A. Raghunathan, C. Finn, V. Smith,
and S. Levine, “Bitrate-constrained DRO: Beyond worst case robustness
to unknown group shifts,” in The Eleventh International Conference on
Learning Representations, 2023.

[75] Y. Chen, K. Zhou, Y. Bian, B. Xie, B. Wu, Y. Zhang, M. KAILI, H. Yang,
P. Zhao, B. Han, and J. Cheng, “Pareto invariant risk minimization:
Towards mitigating the optimization dilemma in out-of-distribution
generalization,” in The Eleventh International Conference on Learning
Representations, 2023.

[76] S. Yan, H. Song, N. Li, L. Zou, and L. Ren, “Improve unsupervised do-
main adaptation with mixup training,” arXiv preprint arXiv:2001.00677,
2020.

[77] D. Li, Y. Yang, Y.-Z. Song, and T. Hospedales, “Learning to generalize:
Meta-learning for domain generalization,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 32, 2018.

[78] H. Nam, H. Lee, J. Park, W. Yoon, and D. Yoo, “Reducing domain gap
by reducing style bias,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 8690–8699.

[79] Z. Huang, H. Wang, E. P. Xing, and D. Huang, “Self-challenging im-
proves cross-domain generalization,” in Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part II 16. Springer, 2020, pp. 124–140.

[80] D. Kim, Y. Yoo, S. Park, J. Kim, and J. Lee, “Selfreg: Self-supervised
contrastive regularization for domain generalization,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, 2021, pp.
9619–9628.

[81] O. Pooladzandi, D. Davini, and B. Mirzasoleiman, “Adaptive second
order coresets for data-efficient machine learning,” in International
Conference on Machine Learning. PMLR, 2022, pp. 17 848–17 869.

[82] A. D’Amour, K. Heller, D. Moldovan, B. Adlam, B. Alipanahi, A. Beu-
tel, C. Chen, J. Deaton, J. Eisenstein, M. D. Hoffman et al., “Underspec-
ification presents challenges for credibility in modern machine learning,”
The Journal of Machine Learning Research, vol. 23, no. 1, pp. 10 237–
10 297, 2022.

[83] D. Teney, E. Abbasnejad, S. Lucey, and A. Van den Hengel, “Evading
the simplicity bias: Training a diverse set of models discovers solutions
with superior ood generalization,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2022, pp.
16 761–16 772.

Yuxin Dong received the B.E. and Ph.D. degrees in computer science
and technology from Xi’an Jiaotong University, Xi’an, China, in 2019 and
2024, respectively. His research interests include information theory, statistical
learning theory, and bioinformatics.

Tieliang Gong received the Ph.D. degree from Xi’an Jiaotong University,
Xi’an, China, in 2018. From September 2018 to October 2020, he was a
Post-Doctoral Researcher with the Department of Mathematics and Statistics,
University of Ottawa, Ottawa, ON, Canada. He is currently an Associate
Professor with the School of Computer Science and Technology, Xi’an
Jiaotong University. His research interests include statistical learning theory,
machine learning, and information theory.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3531136

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on February 02,2025 at 11:54:18 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INFORMATION THEORY 27

Hong Chen received the B.S., M.S., and Ph.D. degrees from Hubei University,
Wuhan, China, in 2003, 2006, and 2009, respectively. Currently, he is a
Professor with the Department of Mathematics and Statistics, College of
Informatics, Huazhong Agricultural University, Wuhan, China. His current
research interests include machine learning, statistical learning theory, and
approximation theory.

Shuangyong Song received the Ph.D. degree from the State Key Laboratory
of Management and Control for Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing, China, in 2012. He is currently a
Manager with the China Telecom Corporation, Beijing, China. His research
interests include information retrieval, web/text mining, and natural language
processing.

Weizhan Zhang (Senior Member, IEEE) received the B.S. degree in applied
electronics from Zhejiang University, Hangzhou, China, in 1999, and the Ph.D.
degree in computer science from Xi’an Jiaotong University, Xi’an, China,
in 2010. He was a Software Engineer at Datang Telecom, Beijing, China,
from 1999 to 2002, and a Visiting Scholar at Pennsylvania State University,
University Park, PA, USA, from 2015 to 2016. He joined the faculty of Xi’an
Jiaotong University as an Assistant Professor in 2010, an Associate Professor
in 2014, and a Professor in 2019. He is currently a Professor with the School
of Computer Science and Technology, Xi’an Jiaotong University.

Chen Li received his Ph.D. degree from the University of Cambridge, UK, in
2014. From Jun 2014 to Mar 2016, he was a Post-Doctoral Researcher with the
Massachusetts Institute of Technology, USA. He is currently a Professor with
the School of Computer Science and Technology, Xi’an Jiaotong University,
China. His research interests include natural language processing, biological
text mining, digital pathology, and bioinformatics.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2025.3531136

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: The Ohio State University. Downloaded on February 02,2025 at 11:54:18 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Problem Setting
	Generalization Analysis
	Decomposing the Generalization Gap
	Source-domain Generalization
	Target-domain Generalization

	Inter-domain Distribution Matching
	Per-sample Distribution Matching
	Algorithm Design

	Related Works
	Experimental Results
	Colored MNIST
	DomainBed Benchmark

	Further Discussions
	Information Bottleneck for Target-domain Generalization
	Leveraging the Independence Assumption
	High-probability Problem Formulation
	Tighter Bounds for Target-Domain Population Risk
	Generalization Bounds for Source-Domain Empirical Risk
	High-probability Generalization Bounds

	Conclusion
	Appendix A: Prerequisite Definitions and Lemmas
	Appendix B: Omitted Proofs
	Appendix C: Experiment Details
	Colored MNIST
	DomainBed Benchmark

	Appendix D: Additional Experimental Results
	Component Analysis
	Gradient Alignment
	Representation Alignment
	Warmup Iterations
	Moving Average
	PDM for Distribution Matching

	Running Time Comparison
	Full DomainBed Results

	References
	Biographies
	Yuxin Dong
	Tieliang Gong
	Hong Chen
	Shuangyong Song
	Weizhan Zhang (Senior Member, IEEE)
	Chen Li


