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Abstract
The recent surge in contrastive learning has inten-
sified the interest in understanding the generaliza-
tion of non-pointwise learning paradigms. While
information-theoretic analysis achieves remark-
able success in characterizing the generalization
behavior of learning algorithms, its applicability
is largely confined to pointwise learning, with
extensions to the simplest pairwise settings re-
maining unexplored due to the challenges of non-
i.i.d losses and dimensionality explosion. In this
paper, we develop the first series of information-
theoretic bounds extending beyond pointwise sce-
narios, encompassing pointwise, pairwise, triplet,
quadruplet, and higher-order scenarios, all within
a unified framework. Specifically, our hypothesis-
based bounds elucidate the generalization behav-
ior of iterative and noisy learning algorithms via
gradient covariance analysis, and our prediction-
based bounds accurately estimate the general-
ization gap with computationally tractable low-
dimensional information metrics. Comprehensive
numerical studies then demonstrate the effective-
ness of our bounds in capturing the generalization
dynamics across diverse learning scenarios.

1. Introduction
It is frequently seen in modern deep-learning scenarios that
the loss functions encompass more than one data point.
Such paradigms are evident in areas including contrastive
representation learning (Chen et al., 2020; Khosla et al.,
2020; Radford et al., 2021), deep metric learning (Oh Song
et al., 2016; Sohn, 2016; Ge, 2018), AUC maximization
(Ying et al., 2016; Liu et al., 2018), and ranking algorithms
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(Clémençon et al., 2008; Agarwal & Niyogi, 2009). Besides
the extensive applications, theoretical foundations of these
methodologies have been explored through the lens of uni-
form convergence (Wang et al., 2012; Kar et al., 2013; Cao
et al., 2016) and algorithm stability (Lei et al., 2020; 2021;
Yang et al., 2021b). However, existing generalization stud-
ies primarily focus on pairwise (Li & Liu, 2023; Wang et al.,
2023; Huang et al., 2023) and triplet (Chen et al., 2023)
learning scenarios, with limited exploration in quadruplet
(Chen et al., 2017) or higher-order (Sohn, 2016; Chen et al.,
2020) contexts. Additionally, these analytical methods often
hinge on the complexity of hypothesis spaces or stringent
assumptions like Lipschitz continuity, smoothness, and con-
vexity, resulting in vacuous or computationally intractable
bounds when applied to deep neural networks.

Recent trends in information theory (Xu & Raginsky, 2017)
offer a promising alternative for analyzing the generaliza-
tion properties of noisy and iterative learning algorithms
(Negrea et al., 2019; Haghifam et al., 2020; Neu et al., 2021;
Tang & Liu, 2023). These bounds are advantageous in being
simultaneously contingent on data distributions and learning
algorithms, and operate under considerably more relaxed
assumptions than algorithm stability approaches. Further
advancements in this domain provide refined bounds by uti-
lizing information quantities involving network predictions
(Harutyunyan et al., 2021), loss pairs (Hellström & Durisi,
2022b), or loss differences (Wang & Mao, 2023) under the
supersample framework (Steinke & Zakynthinou, 2020).
These bounds not only exhibit computational tractability
due to the lower dimensionality of the associated random
variables but also provide quantitatively tighter estimates,
particularly for large neural networks. However, to our best
knowledge, these analyses are primarily confined to point-
wise learning scenarios, with extensions to even the simplest
pairwise settings remaining unexplored.

The significant challenge in extending these information-
theoretic generalization bounds is that the empirical risk no
longer represents a sum of i.i.d random variables, due to
the existence of overlapping training samples in individual
losses. This property is crucial for deriving bounds through
input-output mutual information (Xu & Raginsky, 2017;
Bu et al., 2020), a cornerstone in the analysis of noisy and
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iterative learning algorithms (Negrea et al., 2019; Wang &
Mao, 2021). The generalization of prediction-based bounds
within the supersample framework is also highly non-trivial,
as straightforward adaptations involve information quan-
tities whose dimensionality grows exponentially with the
number of samples m taken by the loss function, resulting
in the loss of computational feasibility. In this paper, we
overcome these obstacles and provide information-theoretic
generalization analysis for a variety of learning scenarios.
The main contributions are summarized as follows:

• We introduce the first information-theoretic generaliza-
tion bound that extends beyond pointwise learning sce-
narios, accommodating a variety of bounded multivariate
loss functions taking arbitrary numbers of data points.
Our analysis encompasses prevailing learning paradigms
including pointwise, pairwise, triplet, quadruplet, and
higher-order cases, all within a unified framework.

• We generalize current information-theoretic generaliza-
tion bounds built upon input-output mutual information
and conditional mutual information measures under the
supersample setting, by employing a bottom-to-top re-
duction of these hypothesis-based information metrics
to overcome the non-i.i.d challenge. These bounds shed
light on the understanding of iterative and noisy learning
algorithms within non-pointwise learning contexts.

• We advance prediction-based bounds while circumvent-
ing the issue of dimensionality explosion. By exploring a
novel decomposition of the supersample variables into in-
dependent lower-dimensional ones, we establish enhanced
bounds using only 2-dimensional information quantities,
regardless of the value m. These bounds are not only
strictly tighter than the straightforward adaptations but
also ensure direct computational tractability.

• Extensive experimental results demonstrate the effective-
ness of our bounds in capturing the generalization dynam-
ics across various deep-learning configurations, utilizing
both synthetic and large-scale real-world datasets.

2. Preliminaries
We denote random variables by capitalized letters (X), their
specific realizations by lowercase letters (x), and the cor-
responding spaces by calligraphic letters (X ). Let PX de-
note the distribution of variable X , PX|Y be the condi-
tional distribution of X given Y , and PX|Y=y (or PX|y)
be the one conditioning on a specific realization. Simi-
larly, denote EX , VarX , and CovX as the expectation, vari-
ance, and covariance matrix taken over X ∼ PX . Let
H(X) be Shannon’s (differential) entropy and D(P ∥Q)
be the KL divergence of P w.r.t Q. We further refer to
d(p ∥ q) = p log(pq ) + (1 − p) log(1−p

1−q ) as the binary KL
divergence. Let I(X;Y ) be the mutual information (MI)
between variables X and Y , and I(X;Y |Z) be their con-

ditional mutual information (CMI) given Z. We further
denote Iz(X;Y ) = D(PX,Y |z ∥PX|zPY |z) as the disinte-
grated MI. Let W(·, ·) be the Wasserstein distance, and log
be the logarithmic function with base e.

2.1. Generalization Error

Let Z = X ×Y denote the instance space of interest, where
X and Y represent the input and label spaces, respectively.
The training dataset Z = {Zi}ni=1 ∈ Zn is constructed
by i.i.d sampling from the unknown data-generating distri-
bution µ. The learning algorithm A then takes Z as the
input and produces a hypothesis W ∈ W , characterized by
the conditional distribution PW |Z . Our analysis adopts a
unified framework for generalizing across diverse learning
paradigms, which are categorized by the number of samples
m taken by the respective loss functions:

• Pointwise Learning (m = 1): cross-entropy, MSE;
• Pairwise Learning (m = 2): contrastive loss;
• Triplet Learning (m = 3): triplet loss;
• Quadruplet Learning (m = 4): quadruplet loss;
• Higher-order Cases (m ≥ 5): N-pair loss, NT-Xent loss.

Let ℓ : W ×Zm 7→ R+ be the loss function used to assess
the quality of the output hypothesis W . Then for a given
w ∈ W , the population risk can be defined as L(w) ≜
EZ1:m [ℓ(w,Z1:m)], where Z1:m ∼ µm is a set of test in-
stances. The expected population risk is denoted as L =
EW [L(W )]. Let Pm

n be the set of m-permutations of n, and
let Cm

n be the set of m-combinations. Given a sequence of in-
dices u = {ui}mi=1 ∈ [1, n]m, let Zu = {Zui

}mi=1 be the se-
quence of training samples indexed by u. The empirical risk
can then be defined as LZ(w) ≜ 1

|Pm
n |
∑

u∈Pm
n
ℓ(w,Zu).

Similarly, let Ln = EW,Z [LZ(W )] be the expected empiri-
cal risk. The generalization error gen ≜ L− Ln quantifies
the discrepancy between empirical and population risks.
Some prevalent settings of non-pointwise learning are dis-
cussed in Appendix D.1.

2.2. Supersample Setting

The CMI framework is initially explored in (Steinke & Za-
kynthinou, 2020) for generalization analysis. Let Z̃ =
{Z̃i}ni=1 ∈ Zn×2 be the supersample dataset i.i.d sam-
pled from µ, where each element Z̃i = (Z̃0

i , Z̃
1
i ) com-

prises a pair of samples. A set of binary random variables
S = {Si}ni=1 ∼ Unif({0, 1}n) is used to segregate train-
ing and test samples, such that Z̃S = {Z̃Si

i }ni=1 and Z̃S =

{Z̃Si
i }ni=1 form the training and test datasets, respectively.

The empirical and population risks are then formulated as
Ln = EW,Z̃,S [LZ̃S

(W )] and L = EW,Z̃,S [LZ̃S
(W )].

Let Bm = {0, 1}m be the set of binary sequences of length
m. Given u ∈ Pm

n and b ∈ Bm, we denote Z̃b
u as the sub-
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set of samples {Z̃bi
ui
}mi=1, and Lb

u be the loss evaluated by
ℓ(W, Z̃b

u). The set of losses computed across all combina-
tions of b ∈ Bm is represented as Lu = {Lb

u}b∈Bm . Let
Su = {Sui}mi=1 ∈ Bm be the sequence of supersample
variables indexed by u, and let Φu = {Su1

⊕ Sui
}mi=2 ∈

Bm−1, where ⊕ is the XOR operation. Given binary value
b ∈ {0, 1}, define b⊗ Φu = (b, {Φui

⊕ b}m−1
i=1 ) ∈ Bm. To

simplify the notations, we denote 0⊗Φu and 1⊗Φu as Φ−
u

and Φ+
u , respectively. LΦu

u = (L
Φ−

u
u , L

Φ+
u

u ) then represents

a pair of losses, and ∆Φu
u = L

Φ+
u

u − L
Φ−

u
u is their difference.

3. Hypothesis-based Generalization Bounds
3.1. Generalization Bounds with Input-output MI

The foundational work of (Xu & Raginsky, 2017) introduced
a methodology for bounding the expected generalization er-
ror through the MI between the input dataset Z and the
output hypothesis W , termed the input-output MI. This con-
cept was further refined and expanded upon in subsequent
studies (Bu et al., 2020; Harutyunyan et al., 2021) through
the incorporation of random subsets:

Theorem 3.1. (Theorem 2.2 in (Harutyunyan et al., 2021))
Assume that m = 1 and the loss function ℓ(·, ·) is bounded
within [0, 1], it holds that for any k ∈ [1, n],

|gen| ≤ 1

|Ck
n|
∑
u∈Ck

n

√
1

2k
I(W ;Zu).

Selecting k = n simplifies the bound by noticing that
|Ck

n| = 1, leading to a convergence rate of O(
√
1/n). This

result is contingent on the assumption of i.i.d loss terms
for a fixed hypothesis w ∈ W . Under this condition, the
empirical risk LZ(w), representing the mean of n i.i.d 1

2 -
subgaussian variables, can be proved to be 1

2
√
n

-subgaussian.
However, this independence assumption is only valid in
pointwise learning scenarios (m = 1). For multivariate loss
functions (m > 1), the individual loss terms are no longer
independent, owing to the overlapping subsets of the train-
ing samples. Inspired by (Bu et al., 2020) who introduced
the concept of point-wise stabilities I(W ;Zi) to measure
generalization, we extend this notion to group-wise stability
in multivariate learning contexts:

|EW,Zu
[ℓ(W,Zu)]− L| ≤

√
1

2
I(W ;Zu),

where u ∈ Pm
n denotes a subset of the training dataset Z

comprising m samples. Leveraging the superadditivity of
MI for independent random variables, the group-wise stabil-
ities serve as a surrogate for the on-average stability mea-
sured by the input-output MI I(W ;Z). We then propose a
generalized theorem applicable for arbitrary m ≥ 1:

Theorem 3.2. Assume that the loss function ℓ(·, ·) is
bounded within [0, 1], then for any k ∈

[
1, n

m

]
,

|gen| ≤ 1

|Ckm
n |

∑
u∈Ckm

n

√
1

2k
I(W ;Zu).

This result coincides with the premise established by (Xu &
Raginsky, 2017): the less dependent the output hypothesis
W is on the input samples Z, the more effectively the learn-
ing algorithm generalizes. In Theorem 3.2, this principle
is extended to multivariate loss functions, encompassing
diverse learning paradigms with arbitrary m ≥ 1 includ-
ing the prevalent pairwise and triplet learning settings. By
assuming n mod m = 0 and taking k = n

m , we achieve a
convergence rate of O(

√
m/n) in Theorem 3.2, aligning

well with the original bound for pointwise learning in The-
orem 3.1 when setting m = 1. Such a convergence rate
also corroborates previous works investigating the uniform
stability of pairwise (Lei et al., 2020; Yang et al., 2021b) and
triplet (Chen et al., 2023) learning. Importantly, it reveals
that the convergence rate is adversely affected by a factor
of

√
m, attributable to the correlations among individual

loss terms. We highlight that this theorem provides the first
explicit linkage between the generalization error and the
number of instances m involved in the loss function.

Building on the advancements made by (Hellström & Durisi,
2022b), we further develop our approach to establishing
generalization bounds on the binary KL divergence between
the expected empirical and population risks:
Theorem 3.3. Assume that the loss function ℓ(·, ·) is
bounded within [0, 1], then for any k ∈

[
1, n

m

]
,

d(Ln ∥L) ≤
1

k|Ckm
n |

∑
u∈Ckm

n

I(W ;Zu).

In the interpolating setting, i.e. Ln = 0, we further have

L ≤ 1

k|Ckm
n |

∑
u∈Ckm

n

I(W ;Zu).

Theorem 3.3 implies that a fast convergence rate O(m/n)
can be achieved as training risk approaches or equals zero,
significantly improving the previous O(

√
m/n) rate. The

removal of the square root enables attaining tighter bounds
when the input-output MI terms are relatively small. Specif-
ically, for any k ∈ [1, n

m ], the bound under the interpolat-
ing setting stipulated above becomes tighter than the prior
square-root bound in Theorem 3.2 when I(W ;Zu) ≤ k

2 for
all u ∈ Pkm

n . Such a criterion is typically met in conven-
tional settings, as we anticipate the upper bound to diminish
to zero as n → ∞, implying that I(W ;Z) = o(n).

The selection of an optimal k value in these bounds is not
immediately apparent, as choosing a smaller k reduces both
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the MI terms and the denominator. Notably, the research of
(Harutyunyan et al., 2021) indicates that the upper bound
in Theorem 3.1 is non-decreasing w.r.t k, suggesting that
the smallest k, namely k = 1, provides the tightest bound.
We extend this conclusion to the settings beyond pointwise
learning with the following proposition:

Proposition 3.4. Let ϕ : R 7→ R be any non-decreasing
concave function, then for any k ∈ [1, n

m − 1], we have

1

|Ckm
n |

∑
u∈Ckm

n

ϕ

(
1

2k
I(W ;Zu)

)
≤

1∣∣Ckm+m
n

∣∣ ∑
u∈Ckm+m

n

ϕ

(
1

2(k + 1)
I(W ;Zu)

)
.

Applying ϕ(x) =
√
x to the proposition above confirms

that k = 1 is indeed the optimal choice for minimizing the
upper bound in Theorem 3.2. Such a conclusion also applies
to Theorem 3.3 by selecting ϕ(x) = x. While the choice
of k = n

m results in less favorable upper bounds, these
findings remain instrumental in analyzing the generalization
properties for iterative and noisy learning algorithms, as will
be discussed in Section 3.3.

3.2. Generalization Bounds with CMI

The pioneering work of (Steinke & Zakynthinou, 2020)
introduced the supersample setting as a novel approach
to bound the expected generalization gap. This method
involves measuring the CMI between the hypothesis W and
supersample variables S, given the supersample dataset Z̃.
Subsequent studies by (Haghifam et al., 2020; Harutyunyan
et al., 2021) further tightened and generalized this bound:

Theorem 3.5. (Theorem 2.6 in (Harutyunyan et al., 2021))
Assume that the loss function ℓ(·, ·) is bounded within [0, 1],
then for any k ∈ [1, n],

|gen| ≤ 1

|Ck
n|
∑
u∈Ck

n

EZ̃

√
2

k
IZ̃(W ;Su).

Setting k = n in Theorem 3.5 yields a convergence rate of
O(
√
1/n). Extending this result to multivariate loss func-

tions meets the same non-i.i.d challenge due to the dependen-
cies among individual loss terms. Following the reduction
techniques explored in the previous section, we are ready to
present the following theorem which implies a convergence
rate of O(

√
m/n) for such learning paradigms:

Theorem 3.6. Assume that the loss function ℓ(·, ·) is
bounded within, then for any k ∈

[
1, n

m

]
,

|gen| ≤ 1

|Ckm
n |

∑
u∈Ckm

n

EZ̃

√
2

k
IZ̃(W ;Su).

0 log(2)/2 log(2)
C2

10.0

7.5

5.0

2.5

0.0

C 1

Fast-rate

Linear &
Fast-rate

Figure 1: Comparison of the available ranges of C1 and C2

in Theorem 3.9 (Linear) and Theorem 3.10 (Fast-rate).

Our Theorem 3.6 generalizes Theorem 3.5 by incorporat-
ing scenarios where m > 1. Note that these bounds are
tighter compared to the original ones in (Steinke & Zakyn-
thinou, 2020), as we move the expectation over Z̃ outside
the square root. This adjustment allows for a straightforward
relaxation to the CMI I(W ;Su|Z̃) using Jensen’s inequality.
In parallel with the development in Theorem 3.3, we further
upper bound the binary KL divergence between the empir-
ical risk Ln and the mean of the empirical and population
risks (Ln + L)/2 as follows:

Theorem 3.7. Assume that the loss function ℓ(·, ·) is
bounded within, then for any k ∈

[
1, n

m

]
,

d

(
Ln

∥∥∥∥ Ln + L

2

)
≤ 1

k|Ckm
n |

∑
u∈Ckm

n

I(W ;Su|Z̃).

The inherent properties of CMI ensure that I(W ;Su|Z̃) ≤
H(Su) = km log 2, thus guaranteeing the finiteness of
these CMI-based generalization bounds. Moreover, it
can be shown that I(W ;S|Z̃) is consistently tighter than
the input-output MI I(W ; Z̃S): Notice the Markov chain
(Z̃, S)−Z̃S−W , we find I(W ; Z̃, S|Z̃S) = 0, which leads
to I(W ; Z̃S) = I(W ; Z̃, S) = I(W ;S|Z̃) + I(W ; Z̃).

Building upon the previous methodologies outlined in
Proposition 3.4, we extend the analysis to the disintegrated
MI I z̃(W ;Su). By employing the functions ϕ(x) =

√
x

or ϕ(x) = x, and subsequently taking an expectation over
Z̃, we establish that Theorems 3.6 and 3.7 are both non-
decreasing w.r.t the parameter k. Consequently, selecting
k = 1 emerges as the optimal choice for attaining the tight-
est estimates of the generalization error.

Proposition 3.8. Let ϕ : R 7→ R be any non-decreasing
concave function, then for any k ∈ [1, n

m − 1] and z̃ ∈ Z2n,

1

|Ckm
n |

∑
u∈Ckm

n

ϕ

(
2

k
I z̃(W ;Su)

)
≤

1∣∣Ckm+m
n

∣∣ ∑
u∈Ckm+m

n

ϕ

(
2

k + 1
I z̃(W ;Su)

)
.
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In a parallel development, we examine the fast-rate bounds
developed in (Hellström & Durisi, 2021), which utilize the
weighted generalization error, genC1

≜ L − (1 + C1)Ln,
where C1 is a predefined constant. This framework facil-
itates the attainment of fast-rate bounds for the expected
generalization error, which exhibits a faster scaling rate of
1/n as opposed to the conventional

√
1/n.

Theorem 3.9. (Corollary 3 in (Hellström & Durisi, 2021))
Assume m = 1 and ℓ(·, ·) ∈ [0, 1], then for any C1, C2 > 0
satisfying (C2

1 + 2C1 + 2)(eC2 − 1− C2)− C1C2 ≤ 0,

gen ≤ C1Ln +
1

n

n∑
i=1

I(W ;Si|Z̃)

C2
.

We then extend this fast-rate bound to encompass multivari-
ate loss functions and permit measuring information within
subsets rather than each individual supersample variable:

Theorem 3.10. Assume that ℓ(·, ·) ∈ [0, 1], then for any
C2 ∈ (0, log 2), C1 ≥ − log(2−eC2 )

C2
− 1 and k ∈

[
1, n

m

]
,

gen ≤ C1Ln +
1

|Ckm
n |

∑
u∈Ckm

n

I(W ;Su|Z̃)

kC2
.

In the interpolating setting, i.e. Ln = 0, we further have

L ≤ 1

|Ckm
n |

∑
u∈Ckm

n

I(W ;Su|Z̃)

k log 2
.

Significantly, Theorem 3.10 enhances the bounds estab-
lished in Theorem 3.9 by broadening the admissible inter-
vals for C1 and C2. An intuitive comparison between these
bounds is depicted in Figure 1. It is evident that Theorem
3.10 not only permits the selection of C2 values greater than
log 2/2 but also allows for smaller values of C1 for a given
C2, compared to Theorem 3.9. Additionally, Theorem 3.10
facilitates a seamless transition to the interpolating regime
by selecting C2 → log 2.

In this section, we introduced multiple generalization
bounds without a definitive hierarchy in terms of their tight-
ness. To facilitate a meaningful comparison, we consider
each bound in its tightest form by setting k = 1. Addition-
ally, we assume that the learning algorithm exhibits average
indifference to permutations of the training samples, such
that the values of I z̃(W ;Su) are independent of the index u.
This assumption simplifies our analysis and is often reason-
able in traditional learning settings. In Figure 2, we conduct
a comparative analysis of the square-root bound (Theorem
3.6), the binary KL bound (Theorem 3.7), and the fast-rate
bound (Theorem 3.10) across wide ranges of the training
risk Ln and the value of MI quantities B. Our analysis
reveals that the fast-rate bound exhibits superior tightness

0 log(2)/2 log(2)
B

1.0

0.75

0.5

0.25

0.0

L n

(a) Constant I z̃(W ;Su)

0 log(2)/2 log(2)
B

1.0

0.75

0.5

0.25

0.0

L n

Trivial

Fast-rate

Binary KL

Square-root

(b) Stochastic IZ̃(W ;Su)

Figure 2: Comparison between the square-root bound (The-
orem 3.6), the binary KL bound (Theorem 3.7) and the
fast-rate bound (Theorem 3.10) with k = 1. The color rep-
resents the tightest bound to characterize L. For the “Trivial”
region, no bound outperforms the trivial bound: L ≤ 1.
(a) Assume that I z̃(W ;Su) = B for any z̃ ∈ Z2n. (b)
Assume that IZ̃(W ;Su) forms an exponential distribution
over Z̃ ∼ µ2n, such that EZ̃ [I

Z̃(W ;Su)] = B.

for smaller training risks, a situation frequently encountered
in practical applications. Conversely, as Ln increases, the
binary KL bound becomes more advantageous. The effi-
cacy of the square-root bound, however, is dependent on
the distribution of the disintegrated MI IZ̃(W ;Su). In sce-
narios where IZ̃(W ;Su) values are diverse, the square-root
bound demonstrates predominance, particularly in interme-
diate regions of the Ln and B spectrum. This comparative
exploration underscores the importance of context-specific
selection between these bounds.

3.3. Algorithm-based Generalization Bounds

We now associate with the mini-batched iterative and noisy
learning algorithms, focusing particularly on stochastic gra-
dient Langevin dynamics (SGLD). We denote the training
trajectory of SGLD as {Wt}Tt=0, where W0 ∈ Rd repre-
sents the randomly initialized model parameters. In the t-th
update, a batch of indices Bt ∈ [n]b×m is independently
selected given the batch size b. The average gradient for this
batch, Gt, is computed as follows:

Gt = −1

b

∑
u∈Bt

∇wℓ(Wt−1, Zu).

The updating rule of SGLD can then be formalized by

Wt = Wt−1 + ηtGt +Nt, Nt ∼ N(0, σ2
t Id),

where ηt denotes the learning rate, and Nt is the isotropic
Gaussian noise injected in each step.

Given the complexity of multivariate loss functions, it is no
longer practical to segment the training dataset into disjoint
mini-batches as in (Wang et al., 2021). Consequently, tech-
niques based on bounding point-wise stabilities I(W ;Zi)
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become inadequate for non-pointwise learning contexts. In-
stead, we adopt the on-average stability approach through
the input-output MI I(W ;Z), following the techniques out-
lined in (Dong et al., 2023). It is demonstrated that the
input-output MI for iterative and noisy learning algorithm
could be upper bounded by leveraging the determinant tra-
jectory of the gradient covariance matrices, a more precise
metric compared to the gradient variance terms explored in
(Negrea et al., 2019; Wang et al., 2021):

Theorem 3.11. (Theorem 2 in (Dong et al., 2023)) For the
SGLD algorithm output W after T iterations with m = 1,
the following bound holds:

I(W ;Z) ≤
T∑

t=1

1

2
log

∣∣∣∣ η2tσ2
t

CovWt−1,Bt
[Gt] + Id

∣∣∣∣.
We enhance this analysis by incorporating conditional gra-
dient covariance, as well as extending our conclusions to
non-pointwise learning scenarios:

Theorem 3.12. For the SGLD algorithm output W after T
iterations, the following bound holds:

I(W ;Z) ≤
T∑

t=1

1

2
log

∣∣∣∣ η2tσ2
t

EWt−1
[Σt] + Id

∣∣∣∣,
where Σt = CovBt

[Gt].

According to the law of total variance, the conditional co-
variance measure Σt is strictly tighter than the unconditional
one in (Dong et al., 2023). Theorem 3.12 can then be com-
bined with generalization bounds discussed in Section 3.1
to obtain upper bounds for the SGLD algorithm:

Corollary 3.13. Assume that ℓ(·, ·) ∈ [0, 1] and n mod
m = 0, then the population risk of SGLD satisfies

d(Ln ∥L) ≤
m

2n

T∑
t=1

log

∣∣∣∣ η2tσ2
t

EWt−1 [Σt] + Id

∣∣∣∣.
While our focus here is on SGLD, we note that analogous
generalization bounds for the standard stochastic gradient
descent (SGD) algorithm and adaptive optimization meth-
ods (e.g., AdaGrad) can also be acquired. Such extensions
involve integrating the auxiliary weight process as explored
in (Neu et al., 2021; Wang & Mao, 2021), following the
same analytical methods developed in this paper.

4. Prediction-based Generalization Bounds
4.1. Loss-difference Generalization Bounds

The seminal work of (Harutyunyan et al., 2021) provides
generalization bounds using the CMI between model outputs
and supersample variables given the supersample dataset.
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Figure 3: Demonstration of the selected pair of losses LΦu
u ,

according to the value of Φu ∈ Bm−1.

This methodology was further refined in (Hellström &
Durisi, 2022b) by focusing on the information contained
within losses, termed evaluated CMI (e-CMI). A straightfor-
ward extension of the e-CMI bound to encompass multivari-
ate loss functions is provided as follows:

Theorem 4.1. Assume that ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

√
2I(Lu;Su).

However, a computational issue arises as the dimension-
ality of the MI terms above scales exponentially with m.
Specifically, considering that |Lu| = |Bm| = 2m encapsu-
lates losses evaluated across all combinations of training
and test samples, the dimensionality of I(Lu;Su) becomes
2m +m. An alternative approach involves employing the
loss-difference technique (Wang & Mao, 2023) to replace
the losses Lu with their differences, potentially halving the
dimensionality. Despite this, the computational feasibility
of the bound remains daunting with the increase of m.

Such an issue is completely solved in the following theorem
which achieves generalization bounds involving only two
1-dimensional variables irrespective of the value of m, by
capitalizing on the independence between Su1

and Φu:

Theorem 4.2. Assume that ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

√
2I(∆Φu

u ;Su1
).

As illustrated in Figure 3, the variable Φu selects a pair
of losses from Lu to calculate ∆Φu

u , forming the Markov
chain Su1

− (Lu,Φu) −∆Φu
u and maintaining the lowest

possible dimensionality for the MI terms. Utilizing the data-
processing inequality and the independence between Su1

and Φu, we then establish that:

I(∆Φu
u ;Su1

) ≤ I(Lu,Φu;Su1
) = I(Lu;Su1

|Φu)

= I(Lu, Su)− I(Lu; Φu).

Thus, the bound in Theorem 4.2 is strictly tighter than the
e-CMI bound in Theorem 4.1. Moreover, the MI term

6
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I(∆Φu
u ;Su1

) can be interpreted as the rate of reliable com-
munication over a memoryless channel with input Su1 and
output ∆Φu

u , as discussed in (Wang & Mao, 2023). This
conceptualization leads to a precise generalization bound
for interpolating scenarios with binary loss functions:

Theorem 4.3. Assume that ℓ(·, ·) ∈ {0, 1}. In the interpo-
lating setting when Ln = 0, we have

L =
∑

u∈Pm
n

I(∆Φu
u ;Su1

)

|Pm
n | log 2

=
∑

u∈Pm
n

I(LΦu
u ;Su1

)

|Pm
n | log 2

.

Therefore, in the case of binary loss with interpolating learn-
ing algorithms, the expected population risk can be precisely
characterized by the summation of sample-wise MI between
Su1 and either the pair of selected losses LΦu

u or their dif-
ference ∆Φu

u . Further refinement of the square-root bound
in Theorem 4.2 is also achievable with the same develop-
ment in Theorem 3.6, by additionally conditioning on Z̃ and
moving the expectation outside the square root:

Theorem 4.4. Assume that ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃

√
2IZ̃(∆Φu

u ;Su1
).

By I(∆Φu
u ;Su1

) ≤ I(Z̃,∆Φu
u ;Su1

) = I(∆Φu
u ;Su1

|Z̃) +

I(Z̃;Su1) and considering the independence between Z̃
and Su1

, the MI term I(∆Φu
u ;Su1

) in Theorem 4.2 is tighter
than its conditional counterpart I(∆Φu

u ;Su1
|Z̃). Nonethe-

less, Theorem 4.4 may still offer tighter upper bounds when
the values of I z̃(∆Φu

u ;Su1) are scattered w.r.t z̃ ∼ µ2n, as
previously evidenced in Figure 2.

4.2. Fast-rate Generalization Bounds

We further enhance the analysis of prediction-based gener-
alization bounds by incorporating the weighted generaliza-
tion error, thereby improving the convergence rate of these
bounds. It is demonstrated by (Wang & Mao, 2023) that

Theorem 4.5. (Theorem 4.3 in (Wang & Mao, 2023)) As-
sume that m = 1 and ℓ(·, ·) ∈ [0, 1], then there exist
C1, C2 > 0 such that

gen ≤ C1Ln +
1

n

n∑
i=1

I(L0
i ;Si)

C2
.

Building on this premise, we extend the fast-rate bound
to multivariate loss functions, tightening the result by si-
multaneously considering the minimum between single-loss
MI 2I(L

Φ+
u

u ;Su1
) and paired-loss MI I(LΦu

u ;Su1
). The

discrepancy between these two quantities is characterized
by the interaction information I(L

Φ+
u

u ;L
Φ−

u
u ;Su1), which

can be either positive or negative. Consequently, there is
no definitive ordering between them, and a more stringent
bound can be derived by evaluating both concurrently:
Theorem 4.6. Assume that ℓ(·, ·) ∈ [0, 1], then for any
C2 ∈ (0, log 2) and C1 ≥ − log(2−eC2 )

C2
− 1,

gen ≤ C1Ln +
∑

u∈Pm
n

min{I(LΦu
u ;Su1

), 2I(L
Φ+

u
u ;Su1

)}
|Pm

n |C2
.

In the interpolating setting, i.e. Ln = 0, we further have

L ≤
∑

u∈Pm
n

min{I(LΦu
u ;Su1), 2I(L

Φ+
u

u ;Su1)}
|Pm

n | log 2
.

The fast-rate bounds are typically useful when the empirical
risk approaches or equals zero. Inspired by the work of
(Wang & Mao, 2023) utilizing the empirical loss variance
to obtain tighter generalization bounds, we further redefine
loss variance for multivariate loss functions as:

V (γ) ≜ EW,Z

 ∑
u∈Pm

n

(ℓ(W,Zu)− (1 + γ)LZ(W ))
2

|Pm
n |

.
Theorem 4.7. Assume that ℓ(·, ·) ∈ {0, 1} and γ ∈ (0, 1),
then for any C2 ∈ (0, log 2) and C1 ≥ − log(2−eC2 )

C2γ2 − 1
γ2 ,

gen ≤ C1V (γ)+
∑

u∈Pm
n

min{I(LΦu
u ;Su1

), 2I(L
Φ+

u
u ;Su1

)}
|Pm

n |C2
.

For binary loss functions, it is proven that V (γ) = Ln −
(1− γ2)EW,Z [L

2
Z(W )] for any γ ∈ (0, 1). By substituting

Ln with V (γ), the loss variance bound above is tighter than
Theorem 4.6 by at least C1(1 − γ2)EW,Z [L

2
Z(W )] with

the same constants C1 and C2. Hence, Theorem 4.7 is
particularly effective when the training risk is near but not
exactly zero, ensuring LZ(W ) > 0. Alternatively, when Ln

is substantially high, our analysis in Figure 2 demonstrates
that the binary KL divergence bound provides the most
accurate estimate for the population risk:
Theorem 4.8. Assume that ℓ(·, ·) ∈ [0, 1], then

d

(
Ln

∥∥∥∥ Ln + L

2

)
≤ 1

|Pm
n |

∑
u∈Pm

n

I(LΦu
u ;Su1

).

Notably, the unconditional MI in Theorem 4.8 is strictly
tighter than its conditional counterpart (the e-CMI bounds
in (Hellström & Durisi, 2022b) for m = 1): due to the
independence between Z̃ and Su1 , we have I(LΦu

u ;Su1) ≤
I(Z̃, LΦu

u ;Su1
) = I(LΦu

u ;Su1
|Z̃). An intuitive compar-

ison between these generalization bounds is depicted in
Figure 2, through examining diverse values of the training
risk Ln and MI quantities B.
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(c) Triplet Loss (m = 3)
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Figure 4: Comparison of the generalization bounds on synthetic Gaussian datasets, where a simple MLP network is trained
with various loss functions. (a) Cross-entropy loss for pointwise learning, (b) Contrastive loss for pairwise learning, (c)
Triplet loss for triplet learning, (d) N-pair loss for contrastive learning with multiple negative samples.
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Figure 5: Comparison of the generalization bounds in multiple real-world learning scenarios. (a) CNN model trained on
binary MNIST (4 vs 9) using Adam, (b) pretrained ResNet-50 fine-tuned on CIFAR-10 using SGD, (c) CNN model trained
on binary MNIST (4 vs 9) using SGLD, (d) pretrained CLIP (ViT-B/32) fine-tuned on Flickr30k using Adam.

5. Numerical Results
In this section, we evaluate different generalization bounds
developed in Section 4, utilizing a variety of synthetic and
practical deep-learning settings1. We focus on comparing
the square-root bound (Theorem 4.2), the binary KL bound
(Theorem 4.8), and the fast-rate bound (Theorem 4.6). The
variance-based bound (Theorem 4.7) is excluded from this
comparative analysis due to its negligible difference from
Theorem 4.6 within the current graphical resolution. These
experiments employ a binary loss function to quantify em-
pirical and population risks, with detailed settings and addi-
tional results delineated in Appendix E.

5.1. Synthetic Datasets

Our initial experiment encompasses a 5-class classification
task, employing a simple MLP network trained on synthetic
Gaussian datasets within a supervised contrastive learning
framework (Khosla et al., 2020). The class centers are
randomly chosen from vertices of a 5-dimensional unit hy-
percube. The evaluation of the generalization gap and the
derived bounds are illustrated in Figure 4. The visualization
results indicate that our generalization bounds adeptly adapt
to diverse values of m and align well with the trend of the
generalization gap: the bounds decrease as the increase of

1The source code is available at https://github.com/
Yuxin-Dong/Pairwise.

sample size n. Notably, the fast-rate bound (Theorem 4.6)
emerges as the most stringent among these comparisons, cor-
roborating our analysis of its effectiveness when the model
achieves low training risks.

5.2. Real-world Learning Tasks

The subsequent experiment extends our analysis to multiple
typical deep-learning scenarios encountered in practice. Fol-
lowing experiment settings in (Hellström & Durisi, 2022b),
we first train a 4-layer CNN on a binarized version of the
MNIST dataset, specifically focusing on the digits 4 and 9.
Subsequently, we fine-tune a pretrained ResNet-50 network
on the CIFAR-10 dataset. These setups follow the fully
supervised learning settings. To assess the scalability of the
presented generalization bounds, we additionally examine
fine-tuning a CLIP (ViT-B/32) model (Radford et al., 2021)
on the Flickr30k dataset in a self-supervised setting.

The comparison of the generalization gap and the upper
bounds is presented in Figure 5. Notably, the empirical
and population risks in self-supervised contrastive learning
scenarios (e.g. CLIP and SimCLR (Chen et al., 2020)) rep-
resent a mixture of pointwise and pairwise risks, which can
be effectively upper bounded by amalgamating bounds for
both m ∈ {1, 2}. Across these experiments, the networks
fit the training datasets well and the fast-rate bound (Theo-
rem 4.6) consistently yields the tightest estimates. Interest-
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ingly, in the case of CLIP, an increase in the generalization
gap is observed for larger n, attributable to the presence of
false negatives in ground truth labels under self-supervised
contexts. Despite this, our bounds effectively capture the
generalization dynamics under both fully-supervised and
self-supervised learning contexts.

6. Conclusion
In this work, we develop the first series of information-
theoretic generalization bounds for non-pointwise learning
paradigms. These bounds augment the analysis of conven-
tional learning algorithms and also ensure direct computa-
tional tractability. Our analysis sheds new light on under-
standing the generalization behavior across a spectrum of
pairwise, triplet, quadruplet learning settings, and beyond.
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A. Prerequisite Definitions and Lemmas
Definition A.1. (Subgaussian) A random variable X is σ-subgaussian if for any ρ ∈ R, E[exp(ρ(X − E[X]))] ≤
exp(ρ2σ2/2).
Definition A.2. (Kullback-Leibler Divergence) Let P and Q be probability measures on the same space X , the KL
divergence from P to Q is defined as D(P ∥Q) ≜

∫
X p(x) log(p(x)/q(x)) dx.

Definition A.3. (Mutual Information) Let (X,Y ) be a pair of random variables with values over the space X ×Y . Let their
joint distribution be PX,Y and the marginal distributions be PX and PY respectively, the mutual information between X
and Y is defined as I(X;Y ) = D(PX,Y ∥PXPY ).
Definition A.4. (Wasserstein Distance) Let c(·, ·) be a metric and let P and Q be probability measures on X . De-
note Γ(P,Q) as the set of all couplings of P and Q (i.e. the set of all joint distributions on X × X with two
marginals being P and Q), then the Wasserstein distance of order p between P and Q is defined as Wp(P,Q) ≜(
infγ∈Γ(P,Q)

∫
X×X c(x, x′)p dγ(x, x′)

)1/p
.

Unless otherwise noted, we use W(·, ·) to denote the Wasserstein distance of order 1.
Definition A.5. (Binary Relative Entropy) Let p, q ∈ [0, 1], then d(q ∥ p) denotes the relative entropy between two
Bernoulli random variables with parameters q and p respectively: d(q ∥ p) = q log( qp ) + (1− q) log( 1−q

1−p ). Given γ ∈ R,
the relaxed version of binary relative entropy is defined as dγ(q ∥ p) = γq − log(1 − p + peγ). One can verify that
supγ dγ(q ∥ p) = d(q ∥ p).
Lemma A.6. (Lemma 1 in (Harutyunyan et al., 2021)) Let (X,Y ) be a pair of random variables with joint distribution
PX,Y and let Ȳ be an independent copy of Y . If f(x, y) is a measurable function such that EX,Y [f(X,Y )] exists and
f(X, Ȳ ) is σ-subgaussian, then ∣∣EX,Y [f(X,Y )]− EX,Ȳ [f(X, Ȳ )]

∣∣ ≤√2σ2I(X;Y ).

Lemma A.7. (Donsker-Varadhan formula) Let P and Q be probability measures defined on the same measurable space X ,
where P is absolutely continuous with respect to Q. Then for any bounded measurable function f : X 7→ R,

D(P ∥Q) = sup
f

{
Ex∼P [f(x)]− logEx∼Q[e

f(x)]
}
,

where X is any random variable such that eX is Q-integrable and EP [X] exists.
Lemma A.8. (Kantorovich-Rubinstein Duality) Let P and Q be probability measures defined on the same measurable
space X , then

W(P,Q) = sup
f∈Lip1

{∫
X
f dP −

∫
X
f dQ

}
,

where Lip1 denotes the set of 1-Lipschitz functions in the metric c, i.e. |f(x) − f(x′)| ≤ c(x, x′) for any f ∈ Lip1 and
x, x′ ∈ X .
Lemma A.9. (Lemma 2 in (Hellström & Durisi, 2022b)) Let X be a random variable that X ∈ [0, 1] almost surely and
E[X] = µ. Then for any γ ∈ R,

E
[
edγ(X ∥µ)

]
≤ 1.

Lemma A.10. Let X1, · · · , Xn be independent random variables, then for any random variable Y ,

I(X1;Y ) + · · ·+ I(Xn;Y ) ≤ I(X1, · · · , Xn;Y ).

Proof. Since X1, · · · , Xn are independent, we have I(X2, · · · , Xn;X1) = 0 and

I(X1, · · · , Xn;Y ) = I(X1;Y ) + I(X2, · · · , Xn;Y |X1)

= I(X1;Y ) + I(X2, · · · , Xn;Y ) + I(X2, · · · , Xn;X1|Y )− I(X2, · · · , Xn;X1)

= I(X1;Y ) + I(X2, · · · , Xn;Y ) + I(X2, · · · , Xn;X1|Y )

≥ I(X1;Y ) + I(X2, · · · , Xn;Y ).

The proof is complete by repeating the reduction steps above. Similar results also hold for disintegrated mutual information
and conditional mutual information metrics.
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Lemma A.11. Let X ∼ N(0,Σ) and Y be any zero-mean random vector satisfying CovY [Y ] = Σ, then H(Y ) ≤ H(X).

Proof. From the condition CovY [Y ] = Σ, we know that when X and Y are d-dimensional variables,∫
pY (x)x

⊤Σ−1x dx =

∫
pY (x)tr(xx

⊤Σ−1) dx = tr(ΣΣ−1) = d =

∫
pX(x)x⊤Σ−1x dx.

Therefore,

0 ≤ D(PY ∥PX) =

∫
pY (x) log

pY (x)

pX(x)
dx

= −H(Y )−
∫

pY (x) log pX(x) dx

= −H(Y ) +

∫
pY (x)

(
d

2
log(2π) +

1

2
log|Σ|+ 1

2
x⊤Σ−1x

)
dx

= −H(Y ) +

∫
pX(x)

(
d

2
log(2π) +

1

2
log|Σ|+ 1

2
x⊤Σ−1x

)
dx

= −H(Y )−H(X).

The proof is complete.

Lemma A.12. (Lemma 9 in (Dong et al., 2023)) For any symmetric positive-definite matrix A, let A =

[
B D⊤

D C

]
be a

partition of A, where B and C are square matrices, then |A| ≤ |B||C|.

B. Omitted Proofs in Section 3
B.1. Proof of Theorem 3.2

Theorem 3.2 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then for any k ∈
[
1, n

m

]
,

|gen| ≤ 1

|Ckm
n |

∑
u∈Ckm

n

√
1

2k
I(W ;Zu).

Proof. By the definition of the expected generalization error, we have that given i.i.d samples Z ′
1:m ∼ µm,

|gen| = |EW,Z [L(W )− LZ(W )]|

=

∣∣∣∣∣∣EW,Z′
1:m

[ℓ(W,Z ′
1:m)]− 1

|Pm
n |

∑
u∈Pm

n

EW,Zu
[ℓ(W,Zu)]

∣∣∣∣∣∣
≤ 1

|Pm
n |

∑
u∈Pm

n

∣∣EW,Z′
1:m

[ℓ(W,Z ′
1:m)]− EW,Zu

[ℓ(W,Zu)]
∣∣. (1)

Recall that ℓ(·, ·) is bounded between [0, 1], we know that ℓ(W,Z ′
1:m) is 1

2 -subgaussian. For any u ∈ Pm
n , since Zu consists

of i.i.d samples, Z ′
1:m is an independent copy of Zu. Then by applying Lemma A.6 with f(W,Zu) = ℓ(W,Zu), we have

∣∣EW,Z′
1:m

[ℓ(W,Z ′
1:m)]− EW,Zu

[ℓ(W,Zu)]
∣∣ ≤√1

2
I(W ;Zu).

Plugging this inequality into (1), we then have

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

∣∣EW,Z′
1:m

[ℓ(W,Z ′
1:m)]− EW,Zu

[ℓ(W,Zu)]
∣∣ ≤ 1

|Pm
n |

∑
u∈Pm

n

√
1

2
I(W ;Zu).
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Since I(W ;Zu) is invariant against permutations of samples in Zu, we have

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

√
1

2
I(W ;Zu) =

1

|Cm
n |

∑
u∈Cm

n

√
1

2
I(W ;Zu).

Then for any k ∈
[
1, n

m

]
,

|gen| ≤ 1

|Cm
n |

∑
u∈Cm

n

√
1

2
I(W ;Zu) =

1

|Ckm
n |

∑
u∈Ckm

n

1

|Pm
km|

∑
v∈Pm

km

√
1

2
I(W ; (Zu)v)

=
1

|Ckm
n |

∑
u∈Ckm

n

1

k

 1

|Pm
km|

∑
v∈Pm

km

√
1

2
I(W ; (Zu)v) + · · ·+ 1

|Pm
km|

∑
v∈Pm

km

√
1

2
I(W ; (Zu)v)


︸ ︷︷ ︸

×k

=
1

|Ckm
n |

∑
u∈Ckm

n

1

|Pkm
km|

∑
v∈Pkm

km

1

k

(√
1

2
I(W ; ((Zu)v)1:m) + · · ·+

√
1

2
I(W ; ((Zu)v)(k−1)m+1:km)

)

≤ 1

|Ckm
n |

∑
u∈Ckm

n

1

|Pkm
km|

∑
v∈Pkm

km

√
1

2k

(
I(W ; ((Zu)v)1:m) + · · ·+ I(W ; ((Zu)v)(k−1)m+1:km)

)
(2)

≤ 1

|Ckm
n |

∑
u∈Ckm

n

1

|Pkm
km|

∑
v∈Pkm

km

√
1

2k
I(W ; (Zu)v) (3)

=
1

|Ckm
n |

∑
u∈Ckm

n

√
1

2k
I(W ;Zu),

where (2) follows by applying Jensen’s inequality on the concave square-root function, and (3) follows by applying Lemma
A.10. The proof is complete.

B.2. Proof of Theorem 3.3

Theorem 3.3 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then for any k ∈
[
1, n

m

]
,

d(Ln ∥L) ≤
1

k|Ckm
n |

∑
u∈Ckm

n

I(W ;Zu).

Furthermore, in the interpolating setting that Ln = 0, we have

L ≤ 1

k|Ckm
n |

∑
u∈Ckm

n

I(W ;Zu).

Proof. By applying Jensen’s inequality on the joint convexity of dγ(· ∥ ·), we have

d(Ln ∥L) = sup
γ

dγ(Ln ∥L) = sup
γ

dγ

 1

|Pm
n |

∑
u∈Pm

n

EW,Zu [ℓ(W,Zu)]

∥∥∥∥∥∥EW [L(W )]


≤ sup

γ

1

|Pm
n |

∑
u∈Pm

n

EW,Zu
[dγ(ℓ(W,Zu) ∥L(W ))]. (4)

Given i.i.d samples Z ′
1:m ∼ µm. For any u ∈ Pm

n , by applying Lemma A.7 with P = PW,Zu , Q = PWPZ′
1:m

and f = dγ ,
we know that

I(W ;Zu) ≥ EW,Zu
[dγ(ℓ(W,Zu) ∥L(W ))]− logEW,Z′

1:m

[
edγ(ℓ(W,Z′

1:m)∥L(W ))
]
. (5)
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For any w ∈ W , we have EZ′
1:m

[ℓ(w,Z ′
1:m)] = L(w). Recall that ℓ(·, ·) ∈ [0, 1], then by applying Lemma A.9, we have

that for any γ ∈ R:
EZ′

1:m

[
edγ(ℓ(w,Z′

1:m)∥L(w))
]
≤ 1.

Since W is independent of Z ′
1:m, this further implies that

EW,Z′
1:m

[
edγ(ℓ(W,Z′

1:m)∥L(W ))
]
= EW

[
EZ′

1:m

[
edγ(ℓ(W,Z′

1:m)∥L(W ))
]]

≤ 1.

Plugging the inequality above into (5), we then get

EW,Zu [dγ(ℓ(W,Zu) ∥L(W ))] ≤ I(W ;Zu).

Plugging this into (4), we obtain

d(Ln ∥L) ≤ sup
γ

1

|Pm
n |

∑
u∈Pm

n

EW,Zu [dγ(ℓ(W,Zu) ∥L(W ))] ≤ 1

|Pm
n |

∑
u∈Pm

n

I(W ;Zu).

Similarly, utilizing the permutation-invariant property of I(W ;Zu) against Zu, we have that for any k ∈
[
1, n

m

]
,

d(Ln ∥L) ≤
1

|Pm
n |

∑
u∈Pm

n

I(W ;Zu) =
1

|Cm
n |

∑
u∈Cm

n

I(W ;Zu) (6)

=
1

|Ckm
n |

∑
u∈Ckm

n

1

|Pm
km|

∑
v∈Pm

km

I(W ; (Zu)v)

=
1

|Ckm
n |

∑
u∈Ckm

n

1

k

 1

|Pm
km|

∑
v∈Pm

km

I(W ; (Zu)v) + · · ·+ 1

|Pm
km|

∑
v∈Pm

km

I(W ; (Zu)v)


︸ ︷︷ ︸

×k

=
1

k|Ckm
n |

∑
u∈Ckm

n

1

|Pkm
km|

∑
v∈Pkm

km

(
I(W ; ((Zu)v)1:m) + · · ·+ I(W ; ((Zu)v)(k−1)m+1:km)

)
≤ 1

k|Ckm
n |

∑
u∈Ckm

n

1

|Pkm
km|

∑
v∈Pkm

km

I(W ; (Zu)v) (7)

=
1

k|Ckm
n |

∑
u∈Ckm

n

I(W ;Zu),

where (7) is by applying Lemma A.10. Consider the case that Ln = 0, we have

d(Ln ∥L) = d(0 ∥L) = log

(
1

1− L

)
≥ L.

The proof is complete.

B.3. Proof of Proposition 3.4

Proposition 3.4 (Restate). Let ϕ : R 7→ R be any non-decreasing concave function, then for any k ∈ [1, n
m − 1],

1

|Ckm
n |

∑
u∈Ckm

n

ϕ

(
1

2k
I(W ;Zu)

)
≤ 1∣∣Ckm+m

n

∣∣ ∑
u∈Ckm+m

n

ϕ

(
1

2(k + 1)
I(W ;Zu)

)
.

Proof. For any u ∈ Pkm+m
n , by applying the chain rule of mutual information, we have

I(W ;Zu) =

k+1∑
i=1

I(W ; (Zu)(i−1)m+1:im|(Zu)1:(i−1)m)
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=

k+1∑
i=1

I(W, (Zu)im+1:(k+1)m; (Zu)(i−1)m+1:im|(Zu)1:(i−1)m)

− I((Zu)(i−1)m+1:im; (Zu)im+1:(k+1)m|(Zu)1:(i−1)m,W )

≤
k+1∑
i=1

I(W, (Zu)im+1:(k+1)m; (Zu)(i−1)m+1:im|(Zu)1:(i−1)m)

=

k+1∑
i=1

I(W ; (Zu)(i−1)m+1:im|(Zu)1:(i−1)m, (Zu)im+1:(k+1)m)

+ I((Zu)(i−1)m+1:im; (Zu)im+1:(k+1)m|(Zu)1:(i−1)m)

=

k+1∑
i=1

I(W ; (Zu)(i−1)m+1:im|(Zu)1:(i−1)m, (Zu)im+1:(k+1)m).

Similarly, for any u ∈ Ckm+m
n , by applying the inequality above with Zu = (Zu)v , we have

I(W ;Zu) =
1∣∣Pm

km+m

∣∣ ∑
v∈Pm

km+m

I(W ;Zu \ (Zu)v) + I(W ; (Zu)v|Zu \ (Zu)v)

=
1∣∣Pkm

km+m

∣∣ ∑
v∈Pkm

km+m

I(W ; (Zu)v) +
1

k + 1

k+1∑
i=1

I(W ; (Zu)v|Zu \ (Zu)v)

=
1∣∣Pkm

km+m

∣∣ ∑
v∈Pkm

km+m

I(W ; (Zu)v)

+
1∣∣Pkm+m

km+m

∣∣ ∑
v∈Pkm+m

km+m

1

k + 1

k+1∑
i=1

I(W ; ((Zu)v)(i−1)m+1:im|Zu \ ((Zu)v)(i−1)m+1:im)

≥ 1∣∣Pkm
km+m

∣∣ ∑
v∈Pkm

km+m

I(W ; (Zu)v) +
1∣∣Pkm+m

km+m

∣∣ ∑
v∈Pkm+m

km+m

1

k + 1
I(W ; (Zu)v).

This implies that

1

k + 1
I(W ;Zu) ≥

1

k
∣∣Ckm

km+m

∣∣ ∑
v∈Ckm

km+m

I(W ; (Zu)v).

Therefore, by applying Jensen’s inequality on the concave function ϕ, we have

1∣∣Ckm+m
n

∣∣ ∑
u∈Ckm+m

n

ϕ

(
1

2(k + 1)
I(W ;Zu)

)

≥ 1∣∣Ckm+m
n

∣∣ ∑
u∈Ckm+m

n

ϕ

 1

2k
∣∣Ckm

km+m

∣∣ ∑
v∈Ckm

km+m

I(W ; (Zu)v)


≥ 1∣∣Ckm+m

n

∣∣ ∑
u∈Ckm+m

n

1∣∣Ckm
km+m

∣∣ ∑
v∈Ckm

km+m

ϕ

(
1

2k
I(W ; (Zu)v)

)

=
1

|Ckm
n |

∑
u∈Ckm

n

ϕ

(
1

2k
I(W ;Zu)

)
.

The proof is complete.
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B.4. Proof of Theorem 3.6

Theorem 3.6 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then for any k ∈
[
1, n

m

]
,

|gen| ≤ 1

|Ckm
n |

∑
u∈Ckm

n

EZ̃

√
2

k
IZ̃(W ;Su) ≤

1

|Ckm
n |

∑
u∈Ckm

n

√
2

k
I(W ;Su|Z̃).

Proof. By the definition of the expected generalization error, we have

|gen| =
∣∣∣EW,Z̃,S

[
LZ̃S

(W )− LZ̃S
(W )

]∣∣∣ ≤ EZ̃

∣∣∣EW,S|Z̃

[
LZ̃S

(W )− LZ̃S
(W )

]∣∣∣
≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃

∣∣∣EW,Su|Z̃

[
LSu
u − LSu

u

]∣∣∣. (8)

Let S′ be an independent copy of S such that S′⊥⊥W |Z̃ = z̃. For any u ∈ Pm
n , by applying Lemma A.7 with P = PW,Su|z̃ ,

Q = PW |z̃PSu
and f(W,Su) = LSu

u − LSu
u , we have

I z̃(W ;Su) = D
(
PW,Su|z̃

∥∥PW |z̃PSu

)
≥ sup

t∈R

{
EW,Su|z̃

[
t
(
LSu
u − LSu

u

)]
− logEW,S′

u|z̃

[
e
t

(
L

S′
u

u −L
S′
u

u

)]}
. (9)

Notice that f(W,S′
u) ∈ [−1, 1] and EW,S′

u|z̃[f(W,S′
u)] = 0, then by the definition of subgaussianity, we have

EW,S′
u|z̃

[
e
t

(
L

S′
u

u −L
S′
u

u

)]
≤ e

t2

2 .

Plugging this into (9), we can get

I z̃(W ;Su) ≥ sup
t∈R

{
EW,Su|z̃

[
t
(
LSu
u − LSu

u

)]
− t2

2

}
,

which further implies that ∣∣∣EW,Su|z̃

[
LSu
u − LSu

u

]∣∣∣ ≤√2I z̃(W ;Su).

Plugging the inequality above into (8), we then have

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃

∣∣∣EW,Su|Z̃

[
LSu
u − LSu

u

]∣∣∣ ≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃

√
2IZ̃(W ;Su).

Following the same reduction steps in the proof of Theorem 3.2, we can prove that for any k ∈
[
1, n

m

]
,

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃

√
2IZ̃(W ;Su) ≤

1

|Ckm
n |

∑
u∈Ckm

n

EZ̃

√
2

k
IZ̃(W ;Su).

Finally, by applying Jensen’s inequality on the square root function, we have

|gen| ≤ 1

|Ckm
n |

∑
u∈Ckm

n

EZ̃

√
2

k
IZ̃(W ;Su) ≤

1

|Ckm
n |

∑
u∈Ckm

n

√
2

k
EZ̃

[
IZ̃(W ;Su)

]
=

1

|Ckm
n |

∑
u∈Ckm

n

√
2

k
I(W ;Su|Z̃).

This completes the proof.
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B.5. Proof of Theorem 3.7

Theorem 3.7 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then for any k ∈
[
1, n

m

]
,

d

(
Ln

∥∥∥∥ Ln + L

2

)
≤ 1

k|Ckm
n |

∑
u∈Ckm

n

I(W ;Su|Z̃).

Furthermore, in the interpolating setting that Ln = 0, we have

L ≤ 2

k|Ckm
n |

∑
u∈Ckm

n

I(W ;Su|Z̃).

Proof. By Jensen’s inequality and the joint convexity of dγ(· ∥ ·), we have

d

(
Ln

∥∥∥∥ Ln + L

2

)
= sup

γ
dγ

(
Ln

∥∥∥∥ Ln + L

2

)
≤ sup

γ
EZ̃

[
dγ

(
EW,S|Z̃

[
LZ̃S

(W )
] ∥∥∥∥∥EW,S|Z̃

[
LZ̃S

(W ) + LZ̃S
(W )

2

])]

= sup
γ

EZ̃,Φ

dγ
 1

|Pm
n |

∑
u∈Pm

n

EW,Su|Z̃,Φu

[
LSu
u

] ∥∥∥∥∥∥ 1

|Pm
n |

∑
u∈Pm

n

EW |Z̃,Φu

[
L
Φ+

u
u + L

Φ−
u

u

2

]
≤ sup

γ

1

|Pm
n |

∑
u∈Pm

n

EZ̃,Φu

[
dγ

(
EW,Su|Z̃,Φu

[
LSu
u

] ∥∥∥∥∥EW |Z̃,Φu

[
L
Φ+

u
u + L

Φ−
u

u

2

])]

≤ sup
γ

1

|Pm
n |

∑
u∈Pm

n

EZ̃,Φu
EW,Su|Z̃,Φu

[
dγ

(
LSu
u

∥∥∥∥∥ L
Φ+

u
u + L

Φ−
u

u

2

)]
. (10)

Let S′ be an independent copy of S such that S′ ⊥⊥ W |Z̃ = z̃. For any u ∈ Pm
n , by applying Lemma A.7 with

P = PW,Su|z̃,ϕu
, Q = PW |z̃,ϕu

PSu|ϕu
and f(W,Su) = dγ

(
LSu
u

∥∥∥∥ L
ϕ+
u

u +L
ϕ−
u

u

2

)
, we have

I z̃,ϕu(W ;Su) = D
(
PW,Su|z̃,ϕu

∥∥PW |z̃,ϕu
PSu|ϕu

)
≥ EW,Su|z̃,ϕu

[
dγ

(
LSu
u

∥∥∥∥∥ L
ϕ+
u

u + L
ϕ−
u

u

2

)]
− logEW,S′

u|z̃,ϕu

edγ

(
L

S′
u

u

∥∥∥∥∥ L
ϕ+
u

u +L
ϕ−
u

u
2

). (11)

Notice that ES′
u|ϕu

[
L
S′
u

u

]
= L

ϕ+
u

u +L
ϕ−
u

u

2 . Then by Lemma A.9, we know that for any γ ∈ R:

EW,S′
u|z̃,ϕu

edγ

(
L

S′
u

u

∥∥∥∥∥ L
ϕ+
u

u +L
ϕ−
u

u
2

) ≤ 1.

Plugging this into (11), we then have

EW,Su|z̃,ϕu

[
dγ

(
LSu
u

∥∥∥∥∥ L
ϕ+
u

u + L
ϕ−
u

u

2

)]
≤ I z̃,ϕu(W ;Su).

Plugging this inequality back into (10), we obtain

d

(
Ln

∥∥∥∥ Ln + L

2

)
≤ sup

γ

1

|Pm
n |

∑
u∈Pm

n

EZ̃,Φu
EW,Su|Z̃,Φu

[
dγ

(
LSu
u

∥∥∥∥∥ L
Φ+

u
u + L

Φ−
u

u

2

)]
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≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃,Φu

[
IZ̃,Φu(W ;Su)

]
≤ 1

|Pm
n |

∑
u∈Pm

n

(
I(W ;Su|Z̃,Φu) + I(W ; Φu|Z̃)

)
=

1

|Pm
n |

∑
u∈Pm

n

I(W ;Su,Φu|Z̃)

=
1

|Pm
n |

∑
u∈Pm

n

I(W ;Su|Z̃).

Following similar reduction steps in the proof of Theorem 3.3, for any k ∈
[
1, n

m

]
:

d

(
Ln

∥∥∥∥ Ln + L

2

)
≤ 1

|Pm
n |

∑
u∈Pm

n

I(W ;Su|Z̃) ≤ 1

|Ckm
n |

∑
u∈Ckm

n

I(W ;Su|Z̃).

When Ln = 0, we have

d

(
Ln

∥∥∥∥ Ln + L

2

)
= d

(
0

∥∥∥∥ L

2

)
≥ L

2
.

The proof is complete.

B.6. Proof of Proposition 3.8

Proposition 3.8 (Restate). Let ϕ : R 7→ R be any non-decreasing concave function, then for any k ∈ [1, n
m − 1] and

z̃ ∈ Z2n,
1

|Ckm
n |

∑
u∈Ckm

n

ϕ

(
2

k
I z̃(W ;Su)

)
≤ 1∣∣Ckm+m

n

∣∣ ∑
u∈Ckm+m

n

ϕ

(
2

k + 1
I z̃(W ;Su)

)
.

Proof. The proof follows the same development as the proof of Proposition 3.4, by replacing the mutual information
I(W ;Zu) with disintegrated mutual information I z̃(W ;Su).

B.7. Proof of Theorem 3.10

Theorem 3.10 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then for any C2 ∈ (0, log 2), C1 ≥ − log(2−eC2 )
C2

− 1 and k ∈
[
1, n

m

]
,

gen ≤ C1Ln +
1

|Ckm
n |

∑
u∈Ckm

n

I(W ;Su|Z̃)

kC2
.

Furthermore, in the interpolating regime that Ln = 0, we have

L ≤ 1

|Ckm
n |

∑
u∈Ckm

n

I(W ;Su|Z̃)

k log 2
.

Proof. Notice that

L− (1 + C1)Ln = EW,Z̃,S

[
LZ̃S

(W )− (1 + C1)LZ̃S
(W )

]
=

1

|Pm
n |

∑
u∈Pm

n

EW,Su,Z̃,Φu

[
LSu
u − (1 + C1)L

Su
u

]
(12)

=
1

|Pm
n |

∑
u∈Pm

n

EZ̃,Φu
EW,Su|Z̃,Φu

[
L
Su1⊗Φu
u − (1 + C1)L

Su1⊗Φu
u

]
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Let S′ be an independent copy of S. For any u ∈ Pm
n , by applying Lemma A.7 with P = PW,Su1

|z̃,ϕu
, Q = PW |z̃,ϕu

PSu1

and f(W,Su1
) = L

Su1
⊗ϕu

u − C1L
Su1

⊗ϕu
u , we have

I z̃,ϕu(W ;Su1
) = D

(
PW,Su1

|z̃,ϕu

∥∥∥PW |z̃,ϕu
PSu1

)
≥ sup

C2>0

{
EW,Su1

|z̃,ϕu

[
C2

(
LSu
u − (1 + C1)L

Su
u

)]
− logEW,S′

u1
|z̃,ϕu

[
e
C2

(
L

S′
u1

⊗ϕu
u −(1+C1)L

S′
u1

⊗ϕu
u

)]}

= sup
C2>0

{
EW,Su1 |z̃,ϕu

[
C2

(
LSu
u − (1 + C1)L

Su
u

)]

− log

EW |z̃,ϕu

[
eC2L

ϕ+
u

u −C2(1+C1)L
ϕ−
u

u + eC2L
ϕ−
u

u −C2(1+C1)L
ϕ+
u

u

]
2

}
. (13)

We intend to carefully select the values of C1 and C2, such that the second term on the RHS is guaranteed to be less

than 0. Notice that eC2L
ϕ+
u

u −C2(1+C1)L
ϕ−
u

u is jointly convex w.r.t Lϕ+
u

u and L
ϕ−
u

u , the maximum value of this term is thus

achieved at the endpoints of Lϕ+
u

u , L
ϕ−
u

u ∈ [0, 1]. When L
ϕ+
u

u = L
ϕ−
u

u = 0, we naturally have eC2L
ϕ+
u

u −C2(1+C1)L
ϕ−
u

u =

eC2L
ϕ−
u

u −C2(1+C1)L
ϕ+
u

u = 1. When L
ϕ+
u

u = L
ϕ−
u

u = 1, we also have eC2L
ϕ+
u

u −C2(1+C1)L
ϕ−
u

u = eC2L
ϕ−
u

u −C2(1+C1)L
ϕ+
u

u =

e−C2C1 ≤ 1. Elsewise when L
ϕ+
u

u = 0 and L
ϕ−
u

u = 1 (or Lϕ+
u

u = 1 and L
ϕ−
u

u = 0), it suffices to select a large enough C1

such that
e−C2(C1+1) + eC2 ≤ 2.

Solving the inequality above yields C1 ≥ − log(2−eC2 )
C2

− 1 and C2 ≤ log 2. Under these conditions, for any u ∈ Pm
n ,

EW |z̃,ϕu

[
eC2L

ϕ+
u

u −C2(1+C1)L
ϕ−
u

u + eC2L
ϕ−
u

u −C2(1+C1)L
ϕ+
u

u

]
≤ 2.

Applying this inequality into (13), we then get

EW,Su1
|z̃,ϕu

[
C2

(
LSu
u − (1 + C1)L

Su
u

)]
≤ I z̃,ϕu(W ;Su1

).

Plugging the inequality above into (12), we obtain

gen = L− (1 + C1)Ln + C1Ln ≤ C1Ln +
1

|Pm
n |

∑
u∈Pm

n

EZ̃,Φu

[
IZ̃,Φu(W ;Su1)

C2

]

= C1Ln +
1

|Pm
n |

∑
u∈Pm

n

I(W ;Su1 |Z̃,Φu)

C2

≤ C1Ln +
1

|Pm
n |

∑
u∈Pm

n

I(W ;Su|Z̃)

C2
.

Following a similar development with the proof of Theorem 3.6, we have that for any k ∈ [1, n
m ],

gen ≤ C1Ln +
1

|Pm
n |

∑
u∈Pm

n

I(W ;Su|Z̃)

C2
≤ C1Ln +

1

|Ckm
n |

∑
u∈Ckm

n

I(W ;Su|Z̃)

kC2
.

In the interpolating regime where Ln = 0, by letting C2 → log 2
2 and C1 → ∞, we have

L ≤ 1

|Ckm
n |

∑
u∈Ckm

n

I(W ;Su|Z̃)

k log 2
.

This completes the proof.
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B.8. Proof of Theorem 3.12

Theorem 3.12 (Restate). Let W be the output of the SGLD algorithm after T updates, then

I(W ;Z) ≤
T∑

t=1

1

2
log

∣∣∣∣ η2tσ2
t

EWt−1
[Σt] + Id

∣∣∣∣.
Proof. For any t ∈ [1, T ], by applying the data-processing inequality on the Markov chain Z → (WT−1, ηtGT +NT ) →
WT−1 + ηtGT +NT , we have

I(WT ;Z) = I(WT−1 + ηtGT +NT ;Z) ≤ I(WT−1, ηtGT +NT ;Z)

= I(WT−1;Z) + I(ηtGT +NT ;Z|WT−1)

· · ·

≤
T∑

t=1

I(ηtGt +Nt;Z|Wt−1).

Since Nt is independent of Z and Bt, we have

CovZ,Bt,Nt [ηtGt +Nt] = CovZ,Bt [ηtGt] + CovNt [Nt] = η2tΣt + σ2
t Id.

By applying Lemma A.11 with Σ = η2tΣt + σ2
t Id, we obtain

Iwt−1(ηtGt +Nt;Z) = H(ηtGt +Nt|Wt−1 = w)−H(ηtGt +Nt|Z,Wt−1 = w)

≤ H(ηtGt +Nt|Wt−1 = w)−H(ηtGt +Nt|Z,Bt,Wt−1 = w)

= H(ηtGt +Nt|Wt−1 = w)−H(Nt)

≤ d

2
log(2πe) +

1

2
log
∣∣η2tΣt + σ2

t Id
∣∣− d

2
log(2πeσ2

t )

=
1

2
log

∣∣∣∣ η2tσ2
t

Σt + Id

∣∣∣∣.
Combining the inequalities above yields:

I(WT ;Z) ≤
T∑

t=1

I(ηtGt +Nt;Z|Wt−1) =

T∑
t=1

EWt−1

[
IWt−1(ηtGt +Nt;Z|Wt−1)

]
=

T∑
t=1

EWt−1

[
1

2
log

∣∣∣∣ η2tσ2
t

Σt + Id

∣∣∣∣]

≤
T∑

t=1

1

2
log

∣∣∣∣ η2tσ2
t

EWt−1
[Σt] + Id

∣∣∣∣,
where the last inequality follows by applying Jensen’s inequality on the concave log-determinant function. By recursively
applying Lemma A.12 to partition the diagonal elements of Σt, we then have

log

∣∣∣∣ η2tσ2
t

EWt−1
[Σt] + Id

∣∣∣∣ ≤ d∑
i=1

log

(
η2t
σ2
t

EWt−1
[(Σt)ii] + 1

)
≤ d log

(
η2t
dσ2

t

EWt−1

[
d∑

i=1

(Σt)ii

]
+ 1

)

= d log

(
η2t
dσ2

t

EWt−1 [tr(Σt)] + 1

)
= d log

(
η2t
dσ2

t

Vt + 1

)
,

where Vt is the conditional gradient variance:

Vt = EWt−1,Bt

[∥∥Gt − EBt|Wt−1
[Gt]

∥∥2
2

]
.

Note that this metric is strictly tighter than the gradient variance defined in (Wang et al., 2021) according to the law of total
variance.
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C. Omitted Proofs in Section 4
C.1. Proof of Theorem 4.1

Theorem 4.1 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

√
2I(Lu;Su).

Proof. Notice that

|gen| =
∣∣∣EW,Z̃,S

[
LZ̃S

(W )− LZ̃S
(W )

]∣∣∣ =
∣∣∣∣∣∣ 1

|Pm
n |

∑
u∈Pm

n

EW,Z̃u,Su

[
LSu
u − LSu

u

]∣∣∣∣∣∣
≤ 1

|Pm
n |

∑
u∈Pm

n

∣∣∣ESu,Lu

[
LSu
u − LSu

u

]∣∣∣. (14)

For any u ∈ Pm
n , we have LSu

u − LSu
u ∈ [−1, 1]. Therefore, LSu

u − LSu
u is 1-subgaussian. Then by applying Lemma A.6

with f(Lu, Su) = LSu
u − LSu

u , we have∣∣∣ESu,Lu

[
LSu
u − LSu

u

]
− ES′

u,Lu

[
L
S

′
u

u − L
S′
u

u

]∣∣∣ ≤√2I(Lu, Su).

It is easy to verify that ES′
u,Lu

[
L
S

′
u

u − L
S′
u

u

]
= 0. By plugging the inequality above into (14), we then get

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

√
2I(Lu, Su).

The proof is complete.

C.2. Proof of Theorem 4.2

Theorem 4.2 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

√
2I(∆Φu

u ;Su1).

Proof. By the definition of the expected generalization error, we have

|gen| =
∣∣∣EW,Z̃,S

[
LZ̃S

(W )− LZ̃S
(W )

]∣∣∣ =
∣∣∣∣∣∣ 1

|Pm
n |

∑
u∈Pm

n

EW,Z̃u,Su

[
LSu
u − LSu

u

]∣∣∣∣∣∣
≤ 1

|Pm
n |

∑
u∈Pm

n

∣∣∣ESu,Lu

[
LSu
u − LSu

u

]∣∣∣
=

1

|Pm
n |

∑
u∈Pm

n

∣∣∣ESu,Lu,Φu

[
(−1)Su1

(
L
Φ+

u
u − L

Φ−
u

u

)]∣∣∣
≤ 1

|Pm
n |

∑
u∈Pm

n

∣∣ESu,Lu,Φu

[
(−1)Su1∆Φu

u

]∣∣. (15)

For any u ∈ Pm
n , we have ∆Φu

u ∈ [−1, 1]. Therefore, (−1)S
′
u1∆Φu

u is 1-subgaussian. Then by applying Lemma A.6 with
f(Su1

,∆Φu
u ) = (−1)Su1∆Φu

u , we have∣∣∣ESu,Lu,Φu

[
(−1)Su1∆Φu

u

]
− ES′

u,Lu,Φu

[
(−1)S

′
u1∆Φu

u

]∣∣∣ ≤√2I(∆Φu
u ;Su1

).
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Notice that ES′
u,Lu,Φu

[
(−1)S

′
u1∆Φu

u

]
= 0, then by plugging the inequality above into (15), we can get

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

∣∣ESu,Lu,Φu

[
(−1)Su1∆Φu

u

]∣∣ ≤ 1

|Pm
n |

∑
u∈Pm

n

√
2I(∆Φu

u ;Su1).

The proof is complete.

C.3. Proof of Theorem 4.3

Theorem 4.3 (Restate). Assume that ℓ(·, ·) ∈ {0, 1} and Ln = 0, then

L =
1

|Pm
n |

∑
u∈Pm

n

I(∆Φu
u ;Su1

)

log 2
=

1

|Pm
n |

∑
u∈Pm

n

I(LΦu
u ;Su1

)

log 2
≤ 1

|Pm
n |

∑
u∈Pm

n

2I(L
Φ+

u
u ;Su1

)

log 2
.

Proof. According to the assumption that ℓ(·, ·) ∈ {0, 1} and Ln = 0, we have

L =
1

|Pm
n |

∑
u∈Pm

n

ESu,Lu

[
LSu
u

]

=
1

|Pm
n |

∑
u∈Pm

n

ELu,Φu|Su1
=0

[
L
Φ+

u
u

]
+ ELu,Φu|Su1

=1

[
L
Φ+

u
u

]
2

=
1

|Pm
n |

∑
u∈Pm

n

P
(
∆Φu

u = 1|Su1
= 0
)
+ P

(
∆Φu

u = −1|Su1
= 1
)

2
. (16)

Notice that the distribution of samplewise training loss LSu
u (or test loss LSu

u ) should be identical regardless of the value

of Su1
. Therefore, the distributions of LΦ+

u
u and L

Φ−
u

u are symmetric given Su1
, i.e. P

L
Φ
+
u

u |Su1=0
= P

L
Φ
−
u

u |Su1=1
and

P
L

Φ
+
u

u |Su1
=1

= P
L

Φ
−
u

u |Su1
=0

. We then have that P (∆Φu
u = 1|Su1

= 0) = P (∆Φu
u = −1|Su1

= 1), P (∆Φu
u = 0|Su1

=

0) = P (∆Φu
u = 0|Su1

= 1) and P (∆Φu
u = 1|Su1

= 1) = P (∆Φu
u = −1|Su1

= 0) = 0.

Let αu = P (∆Φu
u = 1|Su1

= 0), then P (∆Φu
u = 0|Su1

= 0) = 1− αu and

I(∆Φu
u ;Su1) = H(∆Φu

u )−H(∆Φu
u |Su1) = H

(αu

2
, 1− αu,

αu

2

)
−H(αu, 1− αu)

= −αu log
(αu

2

)
+ αu log(αu) = αu log 2.

Plugging this equality into (16), we then have

|gen| = 1

|Pm
n |

∑
u∈Pm

n

P
(
∆Φu

u = 1|Su1
= 0
)
+ P

(
∆Φu

u = −1|Su1
= 1
)

2
=

1

|Pm
n |

∑
u∈Pm

n

αu =
1

|Pm
n |

∑
u∈Pm

n

I(∆Φu
u ;Su1)

log 2
.

By assuming Ln = 0, we know that P (L
Φ+

u
u = 1, L

Φ−
u

u = 1) = 0. Therefore, there exists a bijection between ∆Φu
u and LΦu

u :
∆Φu

u = 0 ↔ LΦu
u = {0, 0}, ∆Φu

u = 1 ↔ LΦu
u = {0, 1} and ∆Φu

u = −1 ↔ LΦu
u = {1, 0}. Then by the data-processing

inequality, we know that I(∆Φu
u ;Su1) = I(LΦu

u ;Su1), and

I(L
Φ+

u
u ;Su1) = H(L

Φ+
u

u )−H(L
Φ+

u
u |Su1) = H

(αu

2
, 1− αu

2

)
− 1

2
H(αu, 1− αu)

= −αu

2
log
(αu

2

)
−
(
1− αu

2

)
log
(
1− αu

2

)
+

αu

2
log(αu) +

1− αu

2
log(1− αu)

≥ −αu

2
log
(αu

2

)
+

αu

2
log(αu) =

αu

2
log 2,

where the inequality above follows by applying Jensen’s inequality on the convex function f(x) = (1− x) log(1− x), such
that f(0)+f(αu)

2 ≥ f(αu

2 ). The proof is complete.
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C.4. Proof of Theorem 4.4

Theorem 4.4 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃

√
2IZ̃(∆Φu

u ;Su1) ≤
1

|Pm
n |

∑
u∈Pm

n

√
2I(∆Φu

u ;Su1 |Z̃).

Proof. From (15), we know that

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

∣∣ESu,Lu,Φu

[
(−1)Su1∆Φu

u

]∣∣ ≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃

∣∣∣ESu,Lu,Φu|Z̃
[
(−1)Su1∆Φu

u

]∣∣∣. (17)

Let S′ be an independent copy of S such that S′ ⊥⊥ W |Z̃ = z̃. For any u ∈ Pm
n , by applying Lemma A.7 with

P = PSu1
,Lu,Φu|z̃ , Q = PLu,Φu|z̃PSu1

and f(Su1
,∆Φu

u ) = (−1)Su1∆Φu
u , we have

I z̃(∆Φu
u ;Su1

) = D
(
PSu1

,Lu,Φu|z̃

∥∥∥PLu,Φu|z̃PSu1

)
≥ sup

t∈R

{
ESu,Lu,Φu|Z̃

[
t(−1)Su1∆Φu

u

]
− logES′

u,Lu,Φu|Z̃

[
et(−1)

S′
u1∆Φu

u

]}
. (18)

Recall that (−1)S
′
u1∆Φu

u ∈ [−1, 1], then by subgaussianity, we have

ES′
u,Lu,Φu|Z̃

[
et(−1)

S′
u1∆Φu

u

]
≤ e

t2

2 .

Plugging this into (18), we have

I z̃(∆Φu
u ;Su1

) ≥ sup
t∈R

{
ESu,Lu,Φu|Z̃

[
t(−1)Su1∆Φu

u

]
− t2

2

}
.

This further implies that ∣∣∣ESu,Lu,Φu|Z̃
[
(−1)Su1∆Φu

u

]∣∣∣ ≤√2I z̃(∆Φu
u ;Su1).

Plugging this inequality into (17), we obtain

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃

∣∣∣ESu,Lu,Φu|Z̃
[
(−1)Su1∆Φu

u

]∣∣∣ ≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃

√
2I z̃(∆Φu

u ;Su1
).

Finally, by applying Jensen’s inequality on the concave square root function, we finish the proof by

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

EZ̃

√
2I z̃(∆Φu

u ;Su1) ≤
1

|Pm
n |

∑
u∈Pm

n

√
EZ̃

[
2I z̃(∆Φu

u ;Su1)
]
=

1

|Pm
n |

∑
u∈Pm

n

√
2I(∆Φu

u ;Su1 |Z̃).

C.5. Proof of Theorem 4.6

Theorem 4.6 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then for any C2 ∈ (0, log 2) and C1 ≥ − log(2−eC2 )
C2

− 1,

gen ≤ C1Ln +
∑

u∈Pm
n

I(LΦu
u ;Su1

)

|Pm
n |C2

.

Furthermore, in the interpolating regime that Ln = 0, we have

L ≤
∑

u∈Pm
n

I(LΦu
u ;Su1)

|Pm
n | log 2

.

25



Towards Generalization beyond Pointwise Learning: A Unified Information-theoretic Perspective

Proof. This result can be obtained by following the same development as the proof of Theorem 3.10 by replacing the mutual
information in (13) by I(LΦu

u ;Su1).

Theorem 4.6 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then for any C2 ∈ (0, log 2
2 ) and C1 ≥ − log(2−e2C2 )

2C2
− 1,

gen ≤ C1Ln +
∑

u∈Pm
n

I(L
Φ+

u
u ;Su1

)

|Pm
n |C2

.

Furthermore, in the interpolating regime that Ln = 0, we have

L ≤
∑

u∈Pm
n

2I(L
Φ+

u
u ;Su1

)

|Pm
n | log 2

.

Proof. Notice that

L− (1 + C1)Ln =
1

|Pm
n |

∑
u∈Pm

n

ESu,Lu

[
LSu
u − (1 + C1)L

Su
u

]
=

1

|Pm
n |

∑
u∈Pm

n

ESu,Lu

[(
1 +

C1

2

)(
LSu
u − LSu

u

)
− C1

2
LSu
u − C1

2
LSu
u

]
=

1

2|Pm
n |

∑
u∈Pm

n

(
ESu1

,Lu,Φu

[
(C1 + 2)(−1)Su1L

Φ+
u

u − C1L
Φ+

u
u

]
+ ESu1

,Lu,Φu

[
−(C1 + 2)(−1)Su1L

Φ−
u

u − C1L
Φ−

u
u

])
. (19)

Recall that in (28) we proved ESu1
,Lu,Φu

[
(−1)Su1L

Φ+
u

u

]
= −ESu1

,Lu,Φu

[
(−1)Su1L

Φ−
u

u

]
. Additionally, notice that P

L
Φ
+
u

u

=

P
L

Φ
−
u

u

, we then have E
L

Φ
+
u

u

[
L
Φ+

u
u

]
= E

L
Φ
−
u

u

[
L
Φ−

u
u

]
. Plugging these into (19), we then have

L− (1 + C1)Ln =
1

|Pm
n |

∑
u∈Pm

n

ESu1
,Lu,Φu

[
(C1 + 2)(−1)Su1L

Φ+
u

u − C1L
Φ+

u
u

]
. (20)

For any u ∈ Pm
n , by applying Lemma A.7 with P = P

L
Φ
+
u

u ,Su1

, Q = P
L

Φ
+
u

u

PSu1
and f(L

Φ+
u

u , Su1
) = C2(C1 +

2)(−1)Su1L
Φ+

u
u − C2C1L

Φ+
u

u , we then have

I(L
Φ+

u
u ;Su1

) = D

(
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L

Φ
+
u

u ,Su1

∥∥∥∥PL
Φ
+
u

u

PSu1

)
≥ sup

C2>0

{
ESu1 ,Lu,Φu

[
C2(C1 + 2)(−1)Su1L

Φ+
u

u − C2C1L
Φ+

u
u

]
− logES′

u1
,Lu,Φu

[
eC2(C1+2)(−1)

S′
u1 L

Φ+
u

u −C2C1L
Φ+
u

u

]}
= sup

C2>0

{
ESu1 ,Lu,Φu

[
C2(C1 + 2)(−1)Su1L

Φ+
u

u − C2C1L
Φ+

u
u

]

− log

ELu,Φu

[
e−2C2(C1+1)L

Φ+
u

u + e2C2L
Φ+
u

u

]
2

}
. (21)

We intend to carefully select the values of C1 and C2, such that the second term on the RHS is guaranteed to be less than 0.

Notice that e−2C2(C1+1)L
Φ+
u

u and e2C2L
Φ+
u

u are both convex functions of LΦ+
u

u , the maximum value of this term is achieved

at the endpoints of LΦ+
u

u ∈ [0, 1]. When L
Φ+

u
u = 0, we naturally have e−2C2(C1+1)L

Φ+
u

u + e2C2L
Φ+
u

u = 2. Elsewise when

L
Φ+

u
u = 1, it suffices to select a large enough C1 such that

e−2C2(C1+1) + e2C2 ≤ 2.
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Solving the inequality above yields C1 ≥ − log(2−e2C2 )
2C2

− 1 and C2 ≤ log 2
2 . Under these conditions, for any u ∈ Pm

n ,

ELu,Φu

[
e−2C2(C1+1)L

Φ+
u

u + e2C2L
Φ+
u

u

]
≤ 2.

Applying this inequality into (21), we then get

ESu1 ,Lu,Φu

[
C2(C1 + 2)(−1)Su1L

Φ+
u

u − C2C1L
Φ+

u
u

]
≤ I(L

Φ+
u

u ;Su1
).

Plugging the inequality above into (20), we obtain

gen = L− (1 + C1)Ln + C1Ln ≤ C1Ln +
∑

u∈Pm
n

I(L
Φ+

u
u ;Su1)

|Pm
n |C2

.

In the interpolating regime where Ln = 0, by letting C2 → log 2
2 and C1 → ∞, we have

L ≤
∑

u∈Pm
n

2I(L
Φ+

u
u ;Su1

)

|Pm
n | log 2

.

This completes the proof.

C.6. Proof of Theorem 4.7

Theorem 4.7 (Restate). Assume that ℓ(·, ·) ∈ {0, 1} and γ ∈ (0, 1), then for any C2 ∈ (0, log 2
2 ) and C1 ≥ − log(2−e2C2 )

2C2γ2 −
1
γ2 ,

gen ≤ C1V (γ) +
∑

u∈Pm
n

I(L
Φ+

u
u ;Su1

)

|Pm
n |C2

.

Proof. By the definition of γ-variance, we have

V (γ) = EW,Z̃,S

 1

|Pm
n |

∑
u∈Pm

n

(
ℓ(W, Z̃Su
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[
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Z̃S
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]
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[
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Z̃S

(W )
]
.

Recall that ℓ(·, ·) ∈ {0, 1}, we have LZ̃S
(W ) ∈ [0, 1], L2

Z̃S
(W ) ≤ LZ̃S

(W ) and

gen− C1V (γ) = gen− C1Ln + C1(1− γ2)EW,Z̃,S

[
L2
Z̃S

(W )
]

≤ gen− C1Ln + C1(1− γ2)EW,Z̃,S

[
LZ̃S

(W )
]

= gen− C1γ
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By applying Theorem 4.6 with C1 = C1γ
2 and C2 = C2, we have

gen− C1γ
2Ln ≤

∑
u∈Pm

n

I(L
Φ+

u
u ;Su1

)

|Pm
n |C2

, (23)

under the constraints that C2 ∈ (0, log 2
2 ) and C1 ≥ − log(2−e2C2 )

2C2γ2 − 1
γ2 . The proof is complete by combining inequalities

(22) and (23).
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C.7. Proof of Theorem 4.8

Theorem 4.8 (Restate). Assume that ℓ(·, ·) ∈ [0, 1], then

d
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Ln

∥∥∥∥ Ln + L

2

)
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n |

∑
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n

I(LΦu
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Furthermore, in the interpolating setting that Ln = 0, we have
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n
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Proof. Recall that in (10) we proved that
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2
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. (24)

For any u ∈ Pm
n , by applying Lemma A.7 with P = PLΦu

u ,Su1
, Q = PLΦu

u
PSu1

and f(LΦu
u , Su1

) = dγ
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we have
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− logELΦu

u ,S′
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L
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Since ES′
u1

[
L
S′
u1

⊗Φu

u

]
= L

Φ+
u

u +L
Φ−
u

u

2 , by applying Lemma A.9, we have that for any γ ∈ R,

ELΦu
u ,S′
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edγ
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⊗Φu
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Plugging this into (25), we can get

ELΦu
u ,Su1

[
dγ

(
LSu
u

∥∥∥∥∥ L
Φ+

u
u + L
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u , Su1).

Plugging the inequality above into (24), we finally get

d

(
Ln

∥∥∥∥ Ln + L

2

)
≤ 1

|Pm
n |

∑
u∈Pm

n

I(LΦu
u , Su1

).

The proof is finished.

D. Additional Discussions and Theoretical Results
D.1. Examples of Non-pointwise Learning

Contrastive representation learning enhances the performance of machine learning models by leveraging the relational
contrast between data points. In this methodology, similar samples are drawn closer together in the embedding space, while
dissimilar samples are distanced from each other. This process is facilitated by a similarity metric d : T × T 7→ R+, which
quantifies the proximity between two embeddings. The core of contrastive learning lies in the evaluation of a contrastive
loss, calculated based on similarities between feature representations Ti extracted from an encoder network f : X 7→ T as
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Ti = f(Xi). The fundamental principle of contrastive learning is to maximize the distance between similar samples while
minimizing the distance between dissimilar ones, often formulated as the max-margin contrastive loss:

ℓcontrast(Xi, Xj) = 1Yi=Yj · d(Ti, Tj) + 1Yi ̸=Yj ·max{ϵ− d(Ti, Tj), 0},

where ϵ is a margin hyperparameter defining the minimum distance between samples of different classes. Through this
approach, the model learns robust representations, which are then transferable to downstream tasks.

The triplet loss, introduced by (Schroff et al., 2015), enhances this objective by incorporating the concept of positive and
negative samples, allowing simultaneous optimization over similarities and dissimilarities:

ℓtriplet(Xi, X+, X−) = max{d(Ti, T+)− d(Ti, T−) + ϵ, 0}.

This formulation enforces Yi = Y+ and Yi ̸= Y−, which may appear incompatible with our original problem settings
discussed in Section 2. However, this issue can be addressed through a simple adaptation:

ℓtriplet(Xi, Xj , Xk) =

{
max{d(Ti, Tj)− d(Ti, Tk) + ϵ, 0}, if Yi = Yj and Yi ̸= Yk,

0, otherwise.

Under this modified formulation, the empirical and population risks are expressed as the summation of triplet losses evaluated
on every subset u ∈ P3

n, thereby facilitating the application of our generalization analysis to these learning settings.

Expanding upon this, the quadruplet loss, proposed by (Chen et al., 2017), incorporates a fourth contrastive sample:

ℓquadruplet(Xi, Xj , Xk, Xl) =

{
max{d(Ti, Tj)− d(Tk, Tl) + ϵ, 0}, if Yi = Yj and Yi ̸= Yk and Yi ̸= Yl and Yk ̸= Yl,

0, otherwise.

Moreover, the n-pair loss, developed by (Sohn, 2016), caters to an arbitrary number of negative samples and introduces
smoothing to the maximum operation, leading to the following formulation:

ℓn-pair(X1:m) =

{
log(1 +

∑m
i=3 exp(d(T1, Ti)− d(T1, T2))), if Y1 = Y2 and Y1 ̸= Yi,∀i ∈ [3,m],

0, otherwise.

Other prominent loss functions in contrastive learning include the NT-Xent loss (Chen et al., 2020) and the InfoNCE loss
(Oord et al., 2018). These loss functions enable the consideration of an arbitrarily large number of contrastive samples.
However, current generalization analyses are predominantly confined to pairwise and triplet settings. Our results, in contrast,
naturally accommodate arbitrarily large values of m, thus providing a more comprehensive and flexible framework for
contrastive learning analysis.

Deep metric learning focuses on quantifying the similarity between data samples. The primary objective of deep metric
learning is to develop an embedding encoder, f : X 7→ T , coupled with a distance metric, d : T ×T 7→ R+. This framework
is designed such that for any two data samples, Xi, Xj , along with their corresponding labels, Yi, Yj , the computed distance
d(Ti, Tj) yields smaller values when the labels are identical and larger values when they differ.

A significant portion of research in deep metric learning is aligned with the principles of contrastive learning. The problem
formulation in deep metric learning closely resembles that of contrastive representation learning, while a key distinction lies
in the nature of the distance metric d. Unlike in contrastive representation learning, where d is typically a predefined and
fixed metric, deep metric learning treats d as a target of the training process, thereby making it trainable and adaptable to
the specific nuances of the given data. Given this conceptual overlap, our generalization analysis is equally applicable and
relevant to the settings of deep metric learning.

Ranking algorithms are designed to process sets of feature vectors and predict the optimal ordering between them. These
algorithms are critical in various applications, ranging from search engines to recommendation systems. Ranking algorithms
can be broadly classified into three primary methodologies, each with its unique approach to ranking items:

• Pointwise ranking: This method involves predicting a score for each individual feature vector. These scores are then used
as the basis for sorting and determining the relative order of the items. Pointwise ranking treats the ranking problem as a
regression or classification task, predicting scores or classes for individual items independently.
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• Pairwise ranking: Pairwise ranking models operate by comparing pairs of items at a time. A typical model, denoted as
f : X × X 7→ [0, 1], receives two data points as input and outputs the probability of the first item being ranked higher
than the second. This approach inherently focuses on the relative ordering of item pairs, thereby transforming the ranking
problem into a binary classification task.

• Listwise Ranking: Diverging from pointwise and pairwise methods, listwise ranking algorithms handle an entire list of
items simultaneously. The input to these models is a complete list of items, and the output is the entire ordering among
them. Consequently, the number of samples m considered by the loss function in listwise ranking is dependent on the
length of these item lists.

While traditional generalization bounds have been effectively applied to the analysis of pointwise and pairwise ranking
algorithms, their extension to listwise ranking algorithms, particularly for large m values, has been less explored. In this
regard, we first facilitate the analysis of generalization in listwise ranking algorithms with arbitrarily large list sizes.

D.2. Additional Related Works

Uniform convergence has emerged as a prominent methodology for investigating the generalization performance of pairwise
learning algorithms (Bartlett et al., 2005). This approach is notable for yielding meaningful learning rates in nonconvex
learning scenarios (Foster et al., 2018; Mei et al., 2018). Uniform convergence analysis has been successfully applied to
specific pairwise learning contexts, such as metric learning (Cao et al., 2016), ranking (Clémençon et al., 2008) and AUC
maximization (Liu et al., 2018; Lei & Ying, 2021). (Lei et al., 2018) further explored the pairwise learning framework using
uniform convergence techniques. More recently, (Lei et al., 2021) developed a uniform convergence analysis of gradients for
pairwise learning. Despite its advantages, the uniform convergence approach often relies on the complexity of the hypothesis
space, characterized by metrics like VC dimension, covering number, and Rademacher complexity. However, these metrics
tend to be scale-sensitive (Zhang et al., 2021) and pose challenges when applied to modern deep neural networks.

Algorithmic stability also plays a crucial role in the analysis of pairwise learning algorithms (Bousquet et al., 2020;
Klochkov & Zhivotovskiy, 2021). This approach involves quantifying the variations in the output predictions consequent to
modifications of the training dataset. (Agarwal & Niyogi, 2009) investigated the relationship between generalization and
stability within ranking algorithms. (Wang et al., 2019) analyzes regularized metric learning through the lens of stability.
(Yang et al., 2021a) extended the scope of stability analysis to address differential privacy problems in pairwise settings.
(Lei et al., 2020) established learning rates for regularized empirical risk minimizers. Subsequently, (Lei et al., 2021) further
offered generalization guarantees for pairwise SGD, broadening the applicability of these concepts under less restrictive
assumptions. Despite the extensive application and theoretical significance, algorithmic stability often relies on convexity
assumptions, which restricts its applicability predominantly to convex learning scenarios. Moreover, a strong convexity
condition is often required when establishing faster learning rates. To our best knowledge, existing generalization studies of
algorithmic stability primarily focus on pairwise (Li & Liu, 2023; Wang et al., 2023; Huang et al., 2023) and triplet (Chen
et al., 2023) learning scenarios, while exploration in quadruplet learning (Chen et al., 2017) or higher-order cases (Sohn,
2016; Chen et al., 2020) is still lacking.

The utilization of information-theoretic metrics for analyzing the generalization properties of learning algorithms has
gained significant traction, particularly following the foundational contributions of (Xu & Raginsky, 2017; Russo & Zou,
2019). These seminal works established a pivotal connection between the expected generalization error and the mutual
information between the hypothesis and the training dataset. This approach has proven to be highly effective in elucidating
the dynamics of noisy and iterative learning algorithms, such as SGLD (Negrea et al., 2019; Wang et al., 2021) and SGD
(Neu et al., 2021; Wang & Mao, 2021; Dong et al., 2023). Additionally, this framework has been enriched and expanded
through various methodologies, including conditioning (Hafez-Kolahi et al., 2020), the chaining strategy (Asadi et al., 2018;
Zhou et al., 2022; Clerico et al., 2022), the random subsets or individual techniques (Bu et al., 2020; Rodrı́guez-Gálvez
et al., 2021), and conditional information measures (Steinke & Zakynthinou, 2020; Haghifam et al., 2020). A noteworthy
advancement was made by (Harutyunyan et al., 2021), who introduced an innovative method for establishing generalization
bounds by leveraging the conditional mutual information between a model’s output and supersample variables. This
approach, which conceptualizes the neural network as a ”black box”, leads to a significant reduction in the dimensionality of
the random variables involved, thereby enhancing the computational tractability. Building upon this foundation, subsequent
studies (Hellström & Durisi, 2022b; Wang & Mao, 2023) further refined this methodology by integrating evaluated losses
and loss differences, resulting in even tighter generalization bounds. Another notable development in the conditional mutual
information framework is the leave-one-out setting (Haghifam et al., 2022; Rammal et al., 2022). This variant markedly
decreases the sample requirement from n× 2 to just n+ 1. Beyond supervised learning contexts, information-theoretic
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bounds have also been applied to analyze generalization in various learning paradigms including meta-learning (Rezazadeh
et al., 2021; Jose et al., 2021; Hellström & Durisi, 2022a), semi-supervised learning (Aminian et al., 2022; He et al., 2022),
and transfer learning (Wu et al., 2020; Masiha et al., 2021; Wang & Mao, 2022; Bu et al., 2022). To our best knowledge,
information-theoretic generalization analysis is currently confined to pointwise learning scenarios, with extensions to even
the simplest pairwise settings remaining unexplored.

D.3. Square-root Bounds with Single-loss MI

According to the Markov chain relationship Su1 − LΦu
u −∆Φu

u and by applying the data-processing inequality, the loss-
difference MI I(∆Φu

u ;Su1) is proven to be tighter than the evaluated MI I(LΦu
u ;Su1). However, there is no definite ordering

between the tightness of I(∆Φu
u ;Su1

) and 2I(L
Φ+

u
u ;Su1

). Therefore, the square-root bound in Theorem 4.2 could be
potentially improved by taking the minimum with the following single-loss bound:
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Proof. By the definition of the expected generalization error, we have
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Plugging the equality above into (27), we then have
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Notice that for any u ∈ Pm
n , (−1)Su1L
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Since ES′
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The proof is complete.

Similarly, the CMI loss-difference bound in Theorem 4.4 could be improved by considering single-loss CMI metrics:
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The result can then be obtained by following the same development with the proof of Theorem 4.4.

D.4. Generalization Bounds with Wasserstein Distance

Inspired by the work of (Rodrı́guez Gálvez et al., 2021), we further present generalization bounds based on Wasserstein
distances. These metrics are shown to be tighter than their information-theoretic counterparts (Wang & Mao, 2022), when
the utilized distance metric c is discrete in Definition A.4.
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Recall that ℓ(w, ·) is β-Lipschitz, then f(w, ·) = 1
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Plugging this inequality into (30), we then get
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Similarly, we can prove that −gen ≤ β
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Recall that ℓ(w, ·) is β-Lipschitz, then f(w) = LSu
u − LSu

u is 2β-Lipschitz. Following similar reduction steps as the proof
of Theorem D.3, we can get
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Theorem D.5. Assume that ℓ(·, ·) ∈ [0, 1], then

|gen| ≤ 1

|Pm
n |

∑
u∈Pm

n

ESu1

[
W
(
P∆Φu

u |Su1
, P∆Φu

u

)]
.

Proof. Let S′ be an independent copy of S, then ES′
u1

,Lu,Φu
[(−1)S

′
u1∆Φu

u ] = 0. By the definition of the expected
generalization error,

gen = EW,Z̃,S

[
LZ̃S

(W )− LZ̃S
(W )

]
=

1

|Pm
n |

∑
u∈Pm

n

ESu,Lu,Φu

[
(−1)Su1∆Φu

u

]
=

1

|Pm
n |

∑
u∈Pm

n

ESu1
,S′

u1

[
ELu,Φu|Su1

[
(−1)Su1∆Φu

u

]
− ELu,Φu

[
(−1)S

′
u1∆Φu

u

]]
. (33)

33



Towards Generalization beyond Pointwise Learning: A Unified Information-theoretic Perspective

75 250 1000 4000
n

0.0

0.1

0.2

0.3

0.4

0.5
Er

ro
r

Error
Square
Binary KL
Weighted

(a) δ = 0

75 250 1000 4000
n

0.2

0.3

0.4

0.5

0.6

Er
ro

r

Error
Square
Binary KL
Weighted

(b) δ = 0.05

75 250 1000 4000
n

0.3

0.4

0.5

0.6

0.7

Er
ro

r

Error
Square
Binary KL
Weighted

(c) δ = 0.1

75 250 1000 4000
n

0.4

0.5

0.6

0.7

0.8

Er
ro

r

Error
Square
Binary KL
Weighted

(d) δ = 0.15

Figure 6: Comparison of the generalization gap and the upper bounds for the binary MNIST classification task with different
levels of label noise, where the labels are randomly flipped with probability δ.

Let f(∆Φu
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Plugging this inequality into (33), we obtain
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Theorem D.6. Assume that ℓ(·, ·) ∈ [0, 1], then
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Proof. The result can be obtained by following the same development with the proof of Theorem D.5.

E. Experiment Details and Additional Results
In this section, we present experiment details and additional experimental results that were not included in the main text due
to space limitations. The deep learning models are trained with an Intel Xeon CPU (2.10GHz, 48 cores), 256GB memory,
and 4 Nvidia Tesla V100 GPUs (32GB).

E.1. Synthetic Experiments

We follow the experimental settings outlined in (Wang & Mao, 2023) to generate synthetic Gaussian datasets using the
scikit-learn Python package. Our objective is to train a 5-class classification network, handling 5-dimensional input data
points. The class centers for this dataset are randomly allocated from the vertices of a five-dimensional hypercube. Data
points are then independently drawn from isotropic Gaussian distributions with a standard deviation of 0.25. For the
model, we opt for a simple 4-layer MLP network, employing ReLU as the activation function. The selection of the loss
function is contingent on the value of m: for m = 1, we utilized the binary 0-1 loss to quantify the generalization gap; for
m > 1, we implemented a binarized version of the corresponding contrastive losses. Specifically, with a predictive function
f : Xm → R, the losses are computed based on a given threshold θ, exemplified in the pairwise contrastive loss as follows:

Lij = 1f(Xi,Xj)≥θ ⊕ 1Yi=Yj .

Here, the threshold θ was adaptively selected to balance precision and recall scores. To ensure statistical robustness, we
executed 200 independent trials for each experimental configuration to accurately estimate the mutual information metrics.
In our main text, the comparative analysis for the variance-based bound (Theorem 4.7) was omitted due to its minimal
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m
n

20 40 60 80 100

1 0.09701 / 0.09679 0.05337 / 0.05333 0.04662 / 0.04657 0.03422 / 0.03418 0.03046 / 0.03045
2 0.12478 / 0.12452 0.08405 / 0.08380 0.05727 / 0.05712 0.05027 / 0.05010 0.03686 / 0.03681
3 0.15337 / 0.15176 0.09442 / 0.09385 0.07873 / 0.07832 0.05999 / 0.05973 0.04478 / 0.04455
4 0.18916 / 0.18782 0.10948 / 0.10895 0.08510 / 0.08475 0.06653 / 0.06622 0.05102 / 0.05085

Table 1: Comparison between the fast-rate bound (Theorem 4.6, left) and the variance-based bound (Theorem 4.7, right) on
synthetic Gaussian datasets using a simple MLP network.

difference at the current graphical resolution in Figure 4. Below, we include a comprehensive comparison between the
fast-rate bound (Theorem 4.6) and the variance-based bound (Theorem 4.7) for completeness:

As can be seen in Table 1, the variance-based bound (Theorem 4.7) is consistently tighter than the fast-rate bound (Theorem
4.6) by taking γ = 0.9. This verifies the advantages of the loss variance when the training risk is close but not equal to zero.

E.2. Real-world Experiments

Following the experiment settings in (Harutyunyan et al., 2021; Hellström & Durisi, 2022b), we conduct 4 distinct real-world
learning scenarios to evaluate the generalization bounds presented in this paper: 1) MNIST 4 vs 9 classification using
Adam, 2) MNIST 4 vs 9 classification using SGLD, 3) CIFAR-10 classification with fine-tuned ResNet-50. We additionally
consider pretraining on Flickr30k with a fine-tuned CLIP (ViT-B/32) model to examine the scalability of our bounds.

For each learning task, we sampled k1 instances of Z̃, involving the random selection of 2n samples from the respective
datasets. Additionally, for each Z̃, we drew k2 samples of the supersample variables S, culminating in k1 × k2 independent
runs in total, with k1 and k2 values aligned with those in (Harutyunyan et al., 2021). Notably, in the CLIP model, the
empirical and population risks are represented as a combination of pointwise and pairwise risks. Let I and T represent the
spaces of images and texts respectively, then sample Zi consists of an image-text pair (Ii, Ti). Let f : I × T 7→ R be the
predictive function parameterized by the CLIP model, the self-supervised contrastive learning loss is then given as:

Lij =

{
1f(Ii,Ti)≤θ, if i = j,

1f(Ii,Tj)≥θ, if i ̸= j.

An upper bound for this mixed risk can then be attained by amalgamating bounds for both m = 1 and m = 2. The
threshold θ is dynamically chosen to balance pointwise and pairwise risks. It’s important to acknowledge that pretraining
generalization performance may not directly correlate with downstream task efficacy, particularly under self-supervised
learning paradigms where false negatives exist in ground truth labels. Consequently, an increase in generalization error with
larger n is a reasonable observation, as demonstrated in Figure 5.

Furthermore, to examine scenarios with significant overfitting, we introduced random label noise into the binary MNIST
dataset. Specifically, the labels were randomly flipped with a specified probability δ. As evidenced in Figure 6, the
generalization bounds evaluated in this study consistently provided non-vacuous estimates of the generalization error.
Among these, the fast-rate bound (Theorem 4.6) consistently emerged as the most stringent in these comparisons.
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