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Efficient Approximations for Matrix-Based
Rényi’s Entropy on Sequential Data

Yuxin Dong , Tieliang Gong , Hong Chen , and Chen Li

Abstract— The matrix-based Rényi’s entropy (MBRE) has
recently been introduced as a substitute for the original Rényi’s
entropy that could be directly obtained from data samples, avoid-
ing the expensive intermediate step of density estimation. Despite
its remarkable success in a broad of information-related tasks,
the computational cost of MBRE, however, becomes a bottleneck
for large-scale applications. The challenge, when facing sequential
data, is further amplified due to the requirement of large-scale
eigenvalue decomposition on multiple dense kernel matrices
constructed by sliding windows in the region of interest, resulting
in O(mn3) overall time complexity, where m and n denote the
number and the size of windows, respectively. To overcome this
issue, we adopt the static MBRE estimator together with a vari-
ance reduction criterion to develop randomized approximations
for the target entropy, leading to high accuracy with substantially
lower query complexity by utilizing the historical estimation
results. Specifically, assuming that the changes of adjacent sliding
windows are bounded by β ≪ 1, which is a trivial case in
domains, e.g., time-series analysis, we lower the complexity
by a factor of

√
β. Polynomial approximation techniques are

further adopted to support arbitrary α orders. In general, our
algorithms achieve O(mn2

√
βst) total computational complexity,

where s, t ≪ n denote the number of vector queries and the
polynomial degrees, respectively. Theoretical upper and lower
bounds are established in terms of the convergence rate for both
s and t , and large-scale experiments on both simulation and
real-world data are conducted to validate the effectiveness of our
algorithms. The results show that our methods achieve promising
speedup with only a trivial loss in performance.

Index Terms— Information theory, matrix-based Rényi’s
entropy (MBRE), randomized numerical linear algebra, signal
processing.
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I. INTRODUCTION

THE classical Rényi entropy covers a family of different
entropy measures through a hyperparameter α (α > 0

and α ̸= 1), including Shannon entropy (α → 1), min
entropy (α → ∞), and collision entropy (α = 2), making
it widely adopted in machine learning and statistical infer-
ence tasks. However, exact access to Rényi entropy requires
complete knowledge about the underlying data distribution,
which is usually prohibitive in real-world applications espe-
cially in high-dimensional cases. As a substitute, the recently
developed matrix-based Rényi’s entropy (MBRE) [1] receives
considerable attention. It is defined on the eigenspectrum of
projected data points in kernel space, which enables us to
directly calculate entropy values from given data, avoiding
the expensive density estimations. This intriguing property
makes it widely adopted in various data science applications,
including classical statistical tasks [2], [3], [4] and advanced
deep learning algorithms [5], [6], [7], e.g., the information
bottleneck principle [8], [9], [10].

Besides static scenarios, applications of entropy on sequen-
tial data have also gained considerable interest recently, e.g.,
regularity quantification in time-series analysis [11], [12],
[13] and adaptive filtering based on minimum error entropy
(MEE) criterion [14], [15]. Albeit attaining elegant perfor-
mance, calculating MBRE requires O(n3) (n is the number
of data points) time complexity through traditional eigenvalue
decomposition techniques, e.g., CUR decomposition and QR
factorization, leading to unacceptable computational costs
for large-scale applications. Especially, when dealing with
sequential data, consecutively calculating MBRE of the slid-
ing windows in regions of interest becomes computationally
prohibitive. Several attempts have been made on this topic:
a very recent work [16] developed static approximation algo-
rithms based on random numerical linear algebra, lowering the
computational cost to O(n2s) (s ≪ n) with optimal statistical
guarantees. However, it still remains a challenge to meet the
real-time requirements.

Inspired by the recent advancement in dynamic implicit
trace estimation [17], we utilize historical approximation
results to reduce the computational cost, and adopt a shrinkage
factor γ to control error accumulation. This strategy further
improves the overall time complexity by a factor of

√
β,

where β ≪ 1 upper bounds the relative changes of adjacent
kernel matrices in sequential scenarios. We further adopt
polynomial approximation techniques to build approximations
for noninteger-order Rényi’s entropy. A theoretical analysis in
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terms of approximation error is provided for all established
algorithms, which are then validated by large-scale simulation
and real data experiments. We summarize the main contribu-
tions of this work as follows.

1) We develop efficient approximations for sequential
MBRE with variance reduction and polynomial approx-
imation techniques. Our algorithms further improve the
efficiency by a factor of

√
β compared with directly

applying [16], lowering the overall complexity from
O(mn3) to O(mn2√βst), where m is the number of
kernel matrices, s ≪ n is the number of random queries
for each kernel matrix, and t ≪ n is the polynomial
degree.

2) We theoretically analyze the performance of all estab-
lished algorithms and provide both upper and lower
bounds in terms of estimation error. Our results indi-
cate that the achieved convergence rate coefficients
O(
√

β/ϵ|1− α|) are nearly optimal up to a logarithmic
factor.

3) Experimental results on both simulation studies and
real-world fault detection tasks of sequential data
show that the proposed approximation methods achieve
promising speedup with only a trivial loss in perfor-
mance.

II. PRELIMINARIES

The MBRE was first proposed in [1]. Unlike the original
Rényi’s entropy defined on the probability distribution of
random variables, this matrix-based variation could be directly
obtained from sampled data points, avoiding the expensive
density estimation operation while retraining the elegant per-
formance and scalability of the original one.

Definition 1 [1]: Let κ : X × X 7→ R be a real-valued
positive kernel that is also infinitely divisible [18]. Given
{xi }

n
i=1 ⊂ X , each xi being a real-valued scalar or vector, and

the Gram matrix K obtained from Ki j = κ(xi , x j ), a matrix-
based analog to Rényi’s α-entropy can be defined as follows:

Sα

(
{xi }

n
i=1, κ

)
≜ Sα(A) =

1
1− α

log(tr(Aα))

=
1

1− α
log

[
n∑

i=1

λ
α
i (A)

]
where Ai j = Ki j/n(Ki i K j j )

1/2 is a normalized kernel matrix
and λi (A) is the i th eigenvalue of A.

The constructed matrix A is symmetric semipositive definite
(SPD) and normalized, i.e., the eigenvalues are in [0, 1] and
satisfy

∑n
i=1 λi (A) = tr(A) = 1. Let the maximum and

minimum eigenvalues be µ ∈ [1/n, 1] and ν ∈ [0, 1/n],
respectively, and the condition number of A is then κ = µ/ν.
Note that both µ and ν could be estimated by various numer-
ical approaches, e.g., power iteration and restarted Lanczos
algorithm with complexity far less than O(n3). We formulate
the sequential entropy estimation problem as follows.

Problem 1 (Sequential Entropy Estimation): Let
x1, . . . , xN , . . . be sequential data with stationary distribution,
X j = {x j , . . . , x j+n−1} be overlapping sliding windows, and
I1, . . . , Im be indexes that satisfy Ii+1 − Ii ∈ [1, β0] for

all i ∈ [1, m − 1]. Let A1, . . . , Am ∈ Rn×n be normalized
kernel matrices constructed by XI1 , . . . , XIm with kernel
κ , respectively. The goal is to compute approximations
S̃α(A1), . . . , S̃α(Am) for Sα(A1), . . . , Sα(Am), such that for
each i ∈ [1, m]

P
[∣∣S̃α(Ai )− Sα(Ai )

∣∣ ≥ ϵ · Sα(Ai )
]
≤ δ.

This problem arises when the dynamic behavior of entropy
value in the region of interest is requested with both high
accuracy and fine granularity. For example, in the bearing fault
detection task [19], one expects to detect suspicious rises in
entropy value as soon as possible. Assuming that the maximum
interval of adjacent window positions is at most β0, we expect
to approximate sequential entropy values efficiently by uti-
lizing the similarity of adjacent kernel matrices. Typically,
we have β0 ≪ n for common situations.

III. APPROXIMATING MBRE FOR SEQUENTIAL DATA

In this work, we seek for efficient solutions of Problem 1
under the implicit matrix computation model. Given access
to an oracle for computing Ac1r1, . . . , Acs rs , where r1, . . . , rs

and c1, . . . , cs are the possibly adaptively chosen vectors and
indexes of matrices, respectively, our goal is to compute
approximations to the objectives Sα(A1), . . . , Sα(Am) with
minimum number of vectors s. In this section, we provide
both integer and noninteger α-order algorithms for sequential
approximation of MBRE.

A. Randomized Approximation

The previous work [16] developed efficient algorithms for
approximating static MBRE by stochastic trace estimation
techniques, where both cases of integer and noninteger-order
α are considered. It argued that the following relative error
guarantee holds with high probability if the number of random
queries is chosen by s = O(1/ϵ):∣∣S̃α(A)− Sα(A)

∣∣ ≤ ϵ · Sα(A). (1)

Intuitively, a straightforward solution for Problem 1 could
be derived by simply applying the static approximation algo-
rithms to every kernel matrix Ai , i ∈ [1, m]. To achieve the
same error bound as (1) for all m kernel matrices, O(m/ϵ)

matrix-vector multiplications are required in total. However,
this approach does not take the bounded window intervals
β0 assumption into consideration, which could be utilized to
further reduce the overall complexity.

Recently, [17] investigated the dynamic implicit trace esti-
mation problem: given access to a matrix-vector multiplication
oracle for a dynamically changing matrix with changes
bounded in nuclear norm, maintain an approximation to its
trace. By noticing the linearity of the trace operator, they
adopted a variance reduction scheme and successfully utilize
historical approximations to reduce the computational burden,
achieving a

√
β factor improvement of the upper bound,

as shown in Algorithm 1 and Lemma 1.
Lemma 1 [17, Th. 4.3]: Let A1, . . . , Am be positive

semidefinite matrices that satisfy

∥Ai∥∗ ≤ 1, for all i ∈ [1, m]
∥Ai+1 − Ai∥∗ ≤ β, for all i ∈ [1, m − 1]
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Algorithm 1 Dynamic Trace Estimation Algorithm [17]
1: Input: Normalized kernel matrices A1, . . . , Am , positive

matrix function f (A), number of random vectors s0 and
s, shrinkage factor γ ∈ [0, 1].

2: Output: Approximations to tr( f (A1)), . . . , tr( f (Am)).
3: Denote hs(·) as the output of Hutch++ algorithm [20]

with s random vectors.
4: Initialize t̃r( f (A1))← hs0( f (A1)).
5: for j ← 2, . . . , m do
6: Calculate t̃r( f (A j )) ← γ · hs( f (A j )) + (1 −

γ )
(
t̃r( f (A j−1))+ hs( f (A j )− f (A j−1))

)
.

7: end for
8: Return: t̃r( f (A1)), . . . , t̃r( f (Am)).

where ∥·∥∗ is the nuclear norm. For any ϵ, δ, β ∈ (0, 1), let
t̃r(A1), . . . , t̃r(Am) be the outputs of Algorithm 1 with γ = β,
s0 = O((1/δ)1/2/ϵ), and s = O((β/δ)1/2/ϵ); then, for all
i ∈ [1, m], with probability at least 1− δ,

∣∣t̃r(Ai )− tr(Ai )
∣∣ ≤

ϵ · tr(Ai ).
It should be noted that the dynamic trace estimation problem

proposed in [17] mainly concerns trace approximation of given
matrix sequences, while Problem 1 aims to approximate the
matrix-based Rényi’s entropy for sequential data. Beyond that,
the overlapping assumption in Problem 1 makes the bounded
difference assumption between two adjacent matrices naturally
satisfied.

Theorem 1: Let A1, . . . , Am be kernel matrices defined in
Problem 1; then, for integer α ≥ 2∥∥Aα

i+1 − Aα
i

∥∥
F ≤ O

(
Lα
[(

1+
√

β0/n
)α

− 1
])

∥∥Aα
i+1 − Aα

i

∥∥
∗
≤ O

([
1+ β0L/

√
n
]α
− 1

)
where L = maxx,y∈X κ(x, y)/(κ(x, x)κ(y, y))1/2 is a constant
that depends only on the kernel κ .

Remark 1: Theorem 1 establishes the connection between
Problem 1 and the dynamic trace estimation problem. It shows
that the bounded changes requisite of Lemma 1 is naturally
satisfied given our assumption on sliding window intervals,
which further allows us exploiting the variance reduction
strategy of Algorithm 1 for entropy approximation. Note that
for most kernel functions, e.g., radial basis function (RBF)
kernels and polynomial kernels, we have finite L to establish
the upper bounds. Otherwise, L can be specified from the
given dataset D: L = maxx,y∈D κ(x, y)/(κ(x, x)κ(y, y))1/2.

However, this adoption is not straightforward, since the
concentration results with respect to trace estimation cannot
be directly applied due to the nonlinear nature of MBRE.
To establish provable statistical accuracy guarantees, we adopt
randomized numerical linear algebra techniques together with
matrix permutation theories to obtain both the upper and lower
bounds for integer and noninteger α orders in Problem 1.

B. Integer-Order Approach

When α ∈ N+, the matrix-vector multiplications f (A) ·v =
Aα
· v could be directly calculated given arbitrary vector v

by continuously multiplying A with the previous result for

Algorithm 2 Sequential Approximation of Integer-Order
MBRE

1: Input: Normalized kernel matrices A1, . . . , Am , integer
order α ≥ 2, number of random vectors s0 and s, shrinkage
factor γ ∈ [0, 1].

2: Output: Approximations to Sα(A1), . . . , Sα(Am).
3: Run algorithm 1 with s0, s, γ , A1, . . . , Am and f (A) =

Aα .
4: Return: S̃α(Ai ) =

1
1−α

log t̃r(Aα
i ) for i = 1, . . . , m.

α times. An algorithm for integer-order entropy estimation is
then derived accordingly, as shown in Algorithm 2.

Theorem 2: Let A1, . . . , Am be normalized kernel matrices
that satisfy∥∥Aα

i+1 − Aα
i

∥∥
∗
≤ β ·max

j
tr
(

Aα
j

)
, for all i ∈ [1, m − 1]

where ∥·∥∗ is the nuclear norm. Let S̃α(A1), . . . , S̃α(Am) be
the outputs of Algorithm 2 with

γ = β, s0 = O
(

ρ
√

1/δ

ϵ

)
, s = O

(
ρ
√

β/δ

ϵ

)
where ρ = max j tr(Aα

j )/ min j tr(Aα
j ); then, for all i ∈ [1, m],

with probability at least 1−δ,
∣∣S̃α(Ai )− Sα(Ai )

∣∣ ≤ ϵ · Sα(Ai ).
In total, it requires

O
(

mαρ ·

√
β/δ

ϵ

)
matrix-vector multiplications involving A1, . . . , Am .

Remark 2: Theorem 2 establishes the main quality-of-
approximation result for Algorithm 2 that O(m

√
β/ϵ) random

queries in total are sufficient to guarantee the approximation
error for all matrices Ai , i ∈ [1, m], with high probabil-
ity. Comparing with the straightforward approach O(m/ϵ),
it is improved substantially by a factor of

√
β. Dharangutte

and Musco [17] also provided a parameter-free version of
the DeltaShift++ algorithm, which automatically selects the
shrinkage factor γ in each step through a minimal variance
criterion.

C. Noninteger-Order Approach

Besides integer orders, fractional α is also frequently
encountered in real-world applications. As pointed out by
Yu et al. [4], α taking values less than 2 or even 1 could
help to improve the performance in information-based fea-
ture selection tasks. However, it is not straightforward to
extend Algorithm 2 to noninteger circumstances, since the
matrix-vector multiplication f (A) · v is no longer directly
acquirable. To tackle this issue, we further introduce poly-
nomial approximation techniques. Among multiple classical
polynomial series, e.g., Taylor series, Legendre series, and so
on, Chebyshev series usually achieves the fastest convergence
rate and yields competitive accuracy compared with the opti-
mal solution [21]. Given an analytic function f defined on
[−1, 1], it is defined by

f (x) =
c0

2
+

∞∑
k=1

ck Tk(x), x ∈ [−1, 1]
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Algorithm 3 Sequential Approximation for Noninteger-Order
MBRE

1: Input: Normalized kernel matrices A1, . . . , Am , integer
order α ≥ 2, number of random vectors s0 and s,
polynomial order t , eigenvalue upper and lower bounds
µ, ν, shrinkage factor γ ∈ [0, 1].

2: Output: Approximations to Sα(A1), . . . , Sα(Am).
3: Run algorithm 1 with s0, s, γ , A1, . . . , Am and f (A) =∑t

k=0 ck T̂ k(A).
4: Return: S̃α(Ai ) =

1
1−α

log t̃r(
∑t

k=0 ck T̂ k(A)) for i =
1, . . . , m.

where the Chebyshev polynomials Tk are defined by T0(x) =

1, T1(x) = x , and Tk+1(x) = 2xTk(x)− Tk−1(x) when k ≥ 1.
In the sequential entropy estimation problem, the function to
approximate is the power function f (λ ) = λ α combined with
a linear mapping g: [−1, 1] → [ν, µ]. Taking the first t major
terms, the coefficients ck , k ∈ [0, t], could be numerically
calculated as follows:

ck =
2

t + 1

t∑
i=0

f (xi )Tk(xi )

where xi = cos(π(i + 1/2)/(t + 1)). We are now able to
approximate the matrix-vector multiplications for arbitrary
vector v by calculating f (A) · v = c0v/2+

∑t
k=1 ck T̂ k(A) · v,

where T̂ k = Tk ◦ g−1 for all k ∈ [1, t].
Theorem 3: Let A1, . . . , Am be normalized kernel matrices

that satisfy∥∥Aα
i+1 − Aα

i

∥∥
∗
≤ β ·max

j
tr
(

Aα
j

)
, for all i ∈ [1, m − 1]

where ∥·∥∗ is the nuclear norm. Let S̃α(A1), . . . , S̃α(Am) be
the outputs of Algorithm 3 with

γ = β, s0 = O
(

ρ
√

1/δ

ϵ|1− α|

)
s = O

(
ρ
√

β/δ

ϵ|1− α|

)
, t = O

(
√

κ log
(

κ

ϵ|1− α|

))
where κ = µ/ν and ρ = max j tr(Aα

j )/ min j tr(Aα
j );

then, for all i ∈ [1, m], with probability at least 1 − δ,∣∣S̃α(Ai )− Sα(Ai )
∣∣ ≤ ϵ · Sα(Ai ). In total, it requires

O
(

mρ ·

√
βκ/δ

ϵ|1− α|
log
(

κ

ϵ|1− α|

))
matrix-vector multiplications involving A1, . . . , Am .

Remark 3: Theorem 3 establishes the relative error bound
for Algorithm 3, where explicit orders of s0, s, and t are
given to guarantee the approximation accuracy. Comparing
with Theorem 2, there is an additional factor 1/|1− α| for
s0 and s, which indicates that it is more difficult for MBRE
estimation when α ≈ 1. Moreover, the order of t mainly
depends on κ but not ϵ.

It is worthwhile to note that the Lanczos method [22], [23]
is introduced as an alternative approach for matrix function
approximation: given implicit matrix f (A) and arbitrary vector
b, an approximation to f (A) · b can be calculated by a
linear interpolation in Krylov subspace {b, A · b, . . . , At

· b}.

This approach could be regarded as an adaptive polynomial
approximation technique, where the polynomial coefficients
are dynamically chosen according to the properties of A and
b, and is shown to outperform explicit approximations, such as
the Chebyshev series. However, this approach is not applicable
in our scenario, as an unbiased trace estimator is required to
control the error accumulation. We leave it for future research
to adopt Lanczos methods in sequential entropy estimation.

IV. LOWER BOUNDS

In this section, we prove a lower bound showing that the
main coefficients 1/ϵ and

√
β in Theorems 2 and 3 are opti-

mal. The proof is under a finite precision assumption, where
the elements in each vector query have bounded precision
of b bits. We first establish the lower bound for the general
trace estimation problem and then the lower bound for Rényi’s
entropy through complexity reduction.

Theorem 4: Let A1, . . . , Am be positive semidefinite matri-
ces that satisfy

tr(Ai ) ≤ 1, for all i ∈ [1, m]
|tr(Ai+1)− tr(Ai )| ≤ β, for all i ∈ [1, m − 1].

Any algorithm that accesses A1, . . . , Am via matrix-vector
multiplication queries Ac1r1, . . . , Acs rs , where c1, . . . , cs ∈

[1, m] are indexes of chosen matrices and r1, . . . , rs are
possibly adaptively chosen vectors with integer entries in
{−2b, . . . , 2b

}, requires

s = �

( √
mβ

ϵ(log(1/mβϵ)+ b)

)
such queries to output estimates t̃r(A1), . . . , t̃r(Am), so that
with probability at least (2/3),

∣∣t̃r(Ai )− tr(Ai )
∣∣ ≤ ϵ · tr(Ai )

for all i = 1, . . . , m.
Remark 4: Note that the prerequisites on matrix traces are

weaker than that in Lemma 1, since the nuclear norm is always
larger than the trace. The coefficients s = �(

√
β/ϵ) match the

previous result Lemma 1 up to a logarithm factor in limited
precision computation models, where b is a constant. However,
the mismatch of coefficient m indicates that this lower bound
could be further improved.

Corollary 1: Let A1, . . . , Am be normalized n × n kernel
matrices that satisfy∣∣tr(Aα

i+1

)
− tr

(
Aα

i

)∣∣≤β ·max
j

tr
(

Aα
j

)
, for all i ∈ [1, m−1].

Any algorithm that accesses A1, . . . , Am via matrix-vector
multiplication queries Ac1r1, . . . , Acs rs , where c1, . . . , cs ∈

[1, m] are indexes of chosen matrices and r1, . . . , rs are
possibly adaptively chosen vectors with integer entries in
{−2b, . . . , 2b

}, requires

s = �

( √
mβ

ϵ|1− α| log n(log(1/mβϵ|1− α| log n)+ b)

)
such queries to output estimates S̃α(A1), . . . , S̃α(Am), so that
with probability at least (2/3),

∣∣S̃α(Ai )− Sα(Ai )
∣∣ ≤ ϵ ·Sα(Ai )

for all i = 1, . . . , m.
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Fig. 1. Comparison of different approaches for integer-order Rényi’s entropy estimation.

Remark 5: Corollary 1 presents the lower bounds for both
integer and noninteger-order sequential Rényi’s entropy esti-
mation. The coefficients s = O

(√
β/ϵ|1− α|

)
match our

previous upper bounds in Theorems 2 and 3 up to a logarithm
factor.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our
approximation methods on both synthetic and real-world
datasets. The algorithms are implemented in C++ with linear
algebra library Eigen, and the experiments are conducted with
an Intel i7-10700 (2.90 GHz) CPU and 64 GB of RAM.
We adopt the adaptive strategy in [17] to automatically select
the hyperparameter γ .

A. Synthetic Data

For synthetic data, we compare our algorithms with three
other alternative approaches, namely, the following hold.

1) Hutch++: The straightforward approach estimates each
Sα(Ai ), i ∈ [1, m], independently.

2) NoRestart: Noticing that tr(Aα
i+1) = tr(Aα

i )+ tr(Aα
i+1 −

Aα
i ) for all i ∈ [1, m − 1], we estimate tr(Aα

0 ) with
s0 random vectors and each tr(Aα

i+1−Aα
i ), i ∈ [1, m−1],

with s random vectors.
3) Restart: Similar to NoRestart, but after every r time

steps, we restart the progress to alleviate error accu-
mulation by estimating the next matrix with s0 random
vectors.

The synthetic data are generated by mixture of Gaussian dis-
tribution (1/2)N (−1, Id)+ (1/2)N (1, Id) with n = 5000 and
d = 10, where Id is the d × d identity matrix. Gaussian
kernel κ(xi , x j ) = exp(−∥xi − x j∥

2
2/2σ 2) with σ = 1 is

adopted to build kernel matrices in Rényi’s entropy. We run
each test for K = 100 times and report the mean relative error
(MRE) curves, where the shaded area indicates ±1/4 standard
deviation (SD). We set number of time steps m = 100. It takes

around 1.4 h for exactly computing MBRE on all 100 kernel
matrices through eigenvalue decomposition techniques.

1) Integer Orders: We first evaluate the performance of
Algorithm 2 for integer-order entropy estimation. For each
method, we fix the total number of random vectors q during
all estimation steps [1, m] and determine the actual values
of s and s0 according to the criterion s0 = s(n/β0)

1/2.
Two levels of perturbations are considered: 1) β0 = 20 and
2) β0 = 50, and the MRE versus time step curves are reported
in Fig. 1 for q = 400 and q = 1000. As expected, the
straightforward approach Hutch++ brings the highest error.
NoRestart achieves low estimation error at the beginning,
but loses its advantage after some steps because of error
accumulation. Restart expels the accumulated error at each
restarting point and is able to control the estimation error to
a reasonable range. Among all approaches, Algorithm 2 can
completely avoid error accumulation and, thus, yields the best
performance with the same number of random queries.

2) Noninteger Orders: We then apply Algorithm 3 for
noninteger-order entropy estimation. Unless otherwise noted,
we keep the same settings above and set α = 1.5, q = 1000,
and t = 10. To begin with, we test the convergence rate
of Chebyshev polynomial approximation in Fig. 2, in which
the polynomial order is selected in t ∈ {4, 10}. As can be
seen, a small t = 10 is enough to achieve high level of
approximation accuracy.

Next, we evaluate the performance of Algorithm 3 for dif-
ferent α entropy orders. As indicated by Theorem 1, we have
β = O(β0Lα/

√
n) when β0 ≪ n, which suggests that the

difficulty of Problem 1 scales linearly with the magnitude of α.
This theoretical finding is verified by our experimental results
in Fig. 3, where larger α values correspond to faster error
accumulation. Furthermore, the approximation error is signif-
icantly larger when α ≈ 1, which verifies the (1/(|1− α|))

factor in our main theorems.
We then test the impact of the Gaussian kernel width σ ,

where different σ values correspond to different distributions
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Fig. 2. Comparison of different approaches for noninteger-order Rényi’s entropy estimation with different polynomial orders (t).

Fig. 3. Comparison of different approaches for noninteger-order Rényi’s entropy estimation with different α orders.

Fig. 4. Comparison of different approaches for noninteger-order Rényi’s entropy estimation with different kernel widths (σ ).

of the eigenspectrum. Intuitively, a larger σ usually results in
faster eigenvalue decay rates. While the convergence rates of s
and s0 are independent with the eigenspectrum, the polynomial
order t is dependent on the condition number κ and, thus,
results in higher approximation error for larger σ . As shown
in Fig. 4, our approximation algorithm can adapt to various
eigenspectrum distributions.

We further apply our approximation algorithm on rank-
deficient matrices, where the minimum eigenvalue ν = 0.
Note that this violates Theorem 3, since the condition number
κ = ∞. However, we demonstrate that our algorithm can still
converge in such circumstances. We use the polynomial kernel
κ(xi , x j ) = (x⊤i x j + r)p with p = 2 and r = 1 to construct

rank-deficient kernel matrices and set the dimension of data
points as d = 98, such that roughly 1% of the eigenvalues are
zero. As shown in Fig. 5, Algorithm 3 still achieves high-level
approximation accuracies for such extreme cases.

B. Real-World Data

For real-world scenarios, we apply our algorithms to the
change detection and diagnosis (CDD) task in rolling element
bearing (REB) operations. The goal is to detect change points
in given vibrating time-series data, which often indicate the
occurrence of serious bearing failures and could lead to further
expensive damages to the operating machine.
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Fig. 5. Comparison of different approaches for noninteger-order Rényi’s
entropy estimation with rank-deficient kernel matrices.

Fig. 6. Entropy of sliding windows evaluated for concatenated data [x0(t),
x11(t)]. The curves are scaled and shifted in the y-axis for comparison.

Bearing faults data are provided by the Bearing Data
Center, Case Western Reserve University [24]. In this exper-
iment, we follow the experiment settings used in [19],
in which 12 signals of drive end accelerometer data are used,
namely, xi (t), i ∈ [0, 11], each containing 5000 samples.
x0(t) is recorded in a fault-free setting, while other signals
x1(t), . . . , x11(t) cover multiple bearing fault types: F0 (no
fault), F1 (inner race), F2 (ball), and F3 (outer race), and
fault sizes: S0 (0.000′′), S1 (0.007′′), S2 (0.014′′), S3 (0.021′′),
and S4 (0.028′′). We compare our methods with two state-of-
the-art entropy-based CDD algorithms [19]: multiscale sample
entropy (MSSE) and multiscale Rényi’s entropy (MSRE). For
MBRE, we consider two approaches: exactly computing all
entropy values through eigenvalue decomposition (Ex) and our
approximation algorithm (Ap) with s0 = 100 and s = 20.

1) Single-Fault Detection: In this experiment, the fault-free
data x0(t) are concatenated with x1(t), . . . , x11(t), respec-
tively, resulting in 11 signals of length 10 000 that constitute
our CDD benchmark. We set the order α = 3 in Rényi’s
entropy and the number of scales τ = 10 in MSSE and MSRE.
We use the Gaussian kernel with kernel width σ adaptively
selected as the average k = 10 nearest Euclidean distances
over all samples.

To detect the occurrence of bearing faults, we divide the
input signal into overlapping sliding windows and calculate
the entropy e(t) for each sliding window. In general, a larger
window size n allows us to acquire more accurate entropy
values, and a smaller sliding interval β0 helps detect change
points to a higher granularity. Note that both these two factors
will result in high-computational cost, since exact access to
MBRE requires n3/β0. We will show that with our approx-
imation techniques, the time cost of approximated MBRE is
no longer unacceptable, while the performance remains high
compared with other entropy measures.

TABLE I
COMPARISON OF DIFFERENT ENTROPY MEASURES

FOR SINGLE-FAULT DETECTION

Fig. 7. Entropy of sliding windows evaluated for concatenated data [x0(t),
x1(t), x4(t), x7(t), x10(t)]. The curves are scaled and shifted in the y-axis for
comparison.

We set n = 2000 and β0 = 50 in this experiment. To our
observation, signals containing bearing faults usually result in
higher entropy, so the evaluated entropy values are expected to
increase dramatically once the fault occurs, as shown in Fig. 6.
Two key properties influence most for the detection accuracy:
1) stability, i.e., entropy values should be stable and do not
vary much in the same signal and 2) distinguishability, i.e.,
the changes of entropy values should be significant enough
to be identified when the signal changes. We then design the
evaluation criteria as follows.

1) The intersection over union (IoU) score between the
intervals that entropy values increase or decrease, and
the interval of sliding windows that contain the change
point t = 5000 (i.e., t ∈ [60, 100] in Fig. 6).

2) The test statistic W in hypothesis test for the mean
between the entropy values of the two signals: W =

|M1 − M2|/((V1 + V2)/w)1/2, where M1, M2, V1, and
V2 are the mean and variance of e(i), i ∈ [0, 60], and
e( j), j ∈ [100, 160], respectively. w = 40 is the number
of sliding windows.

We use the dynamic programming algorithm in Python
package ruptures to detect the increasing or decreasing inter-
val of entropy series, and the final results are reported in
Table I. As can be seen, the exactly calculated MBRE achieves
significantly higher performance over other methods. Our
approximated MBRE achieves more than four times speedup
compared with exact computation, while only introducing a
minimal drop in IoU.

2) Multiple Fault Detection: We additionally consider sig-
nals with multiple faults. Following the benchmark settings
in [25], we concatenate signals of the same type of fault but
different sizes.

1) s1(t) = [x0(t), x1(t), x4(t), x7(t), x10(t)].
2) s2(t) = [x0(t), x2(t), x5(t), x8(t), x11(t)].
3) s3(t) = [x0(t), x3(t), x6(t), x9(t)].

We keep the experiment settings above and compare the
performance of different information measures on these three
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Fig. 8. Multiple fault detection result of different methods on signal s1(t).

TABLE II
COMPARISON OF DIFFERENT ENTROPY MEASURES

FOR MULTIPLE FAULT DETECTION

signals in terms of IoU and the minimum W statistic for all
change points. The entropy curves of signal s1(t) are shown
in Fig. 7, for example, and the results are reported in Table II.
It can be seen that the MBRE still outperforms other methods
in terms of both IoU and W . The change points of signal s1(t)
detected by different entropy measures are shown in Fig. 8,
and it is worth noting that MBRE-Ex achieves IoU = 1 for
this signal.

VI. CONCLUSION

In this article, we develop efficient approximating methods
for MBRE on sequential data. By utilizing historical approx-
imation results following a variance reduction criterion, our
method achieves substantially higher performance than the
previous approach. Through the further adaptation of Cheby-
shev polynomials, we support arbitrary α orders in MBRE.
We establish statistical upper and lower bounds in terms of
approximating accuracy for our algorithms, which show that
the main convergence coefficients

√
β/ϵ are nearly optimal.

Both synthetic and real-world experiments are conducted to
support our theoretical analysis, showing promising speedup
for various machine learning tasks with only trivial loss in
performance.

APPENDIX

A. Proof of Theorem 1

Proof: Note that for all i ∈ [1, m], the sliding windows
Ii+1 and Ii have at least n−β0 overlapping data samples, 0 =

Ai+1− Ai is a low-rank matrix through a proper reorder of the
samples in Ii+1, and Ii : 0 jk = 0 if min(i, j) > β0. Combining
with the fact that the diagonal elements of the normalized
kernel matrix Ai are 1/n, 0 has at most 2nβ0−β2

0−β0 nonzero
elements; therefore

∥Ai+1 − Ai∥F = ∥0∥F ≤ L

√
2nβ0 − β2

0 − β0

n2 .

From the low-rank property of 0, we know that the values of
0 have at most 2β0 nonzero eigenvalues. Considering that the
Frobenius norm is the l2 norm of the eigenvalues, the nuclear
norm reaches its maximum when all nonzero eigenvalues of
0 are equal

∥Ai+1 − Ai∥∗ = ∥0∥∗ ≤ 2β0L

√
2n − β0 − 1

2n2 .

We first consider integer α orders. Let Rα
k (A, B) be the sum

of all terms in the expansion of (A + B)α that the power of
matrix A is k, for example, (A+ B)2

= A2
+ AB+ B A+ B2,

so R2
1(A, B) = AB+ B A. Let p ∈ {F, ∗} be any of Frobenius

norm or nuclear norm. For integer α ≥ 2, we have∥∥Aα
i+1 − Aα

i

∥∥
p =

∥∥(Ai + 0)α − Aα
i

∥∥
p

=

∥∥∥∥∥
α∑

k=0

Rα
k (Ai , 0)− Aα

i

∥∥∥∥∥
p

=

∥∥∥∥∥
α−1∑
k=0

Rα
k (Ai , 0)

∥∥∥∥∥
p

≤

α−1∑
k=0

∥∥Rα
k (Ai , 0)

∥∥
p

≤

α−1∑
k=0

(
α

k

)
∥Ai∥

k
p∥0∥

α−k
p + ∥Ai∥

α
p − ∥Ai∥

α
p

=

α∑
k=0

(
α

k

)
∥Ai∥

k
p∥0∥

α−k
p − ∥Ai∥

α
p

=
(
∥Ai∥p + ∥0∥p

)α
− ∥Ai∥

α
p.

For Frobenius norm, noticing the diagonal elements of Ai are
1/n and the other elements are bounded by L/n, we have
∥Ai∥F ≤ (L2

− L2/n + 1/n)1/2 and∥∥Aα
i+1 − Aα

i

∥∥
F

≤

√L2 − L2/n + 1/n + L

√
2nβ0 − β2

0 − β0

n2

α

−

(√
L2 − L2/n + 1/n

)α

= O
(

Lα
(

1+
√

β0/n
)α

− Lα
)
.
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For nuclear norm, noticing that tr(Ai ) = 1 and its positive
definiteness, we have ∥Ai∥∗ = 1 for all i ∈ [1, m] and

∥∥Aα
i+1 − Aα

i

∥∥
∗
≤

(
1+ 2β0L

√
2n − β0 − 1

2n2

)α

− 1

= O
([

1+ β0L/
√

n
]α
− 1

)
.

For most kernel functions, the constant L is finite to build our
bounds. For example, the following kernel families.

1) RBF Kernels: κ(x, y) = exp(−(∥x − y∥/b)), b > 0.
2) Polynomial Kernels: κ(x, y) = (x⊤y + c)d , c, d > 0.

For RBF kernels, we have κ(x, y) ≤ κ(x, x) =

κ(y, y) = 1 for any given vector norm ∥·∥; therefore,
((κ(x, y))/((κ(x, x)κ(y, y))1/2)) = 1. For polynomial kernels,
denoting θ as the angle between vectors x and y, we have(

d
√

κ(x, y)
)2
=
(
x⊤y + c

)2
=
(
∥x∥2∥y∥2 cos θ + c

)2

= ∥x∥2
2∥y∥

2
2 cos2 θ + 2c∥x∥2∥y∥2 cos θ + c2

≤ ∥x∥2
2∥y∥

2
2 + c

(
∥x∥2

2 + ∥y∥
2
2

)
+ c2

≤
(
∥x∥2

2 + c
)(
∥y∥2

2 + c
)

= (x⊤x + c)(y⊤y + c)

=
d
√

κ(x, x)κ(y, y).

Therefore, κ(x, y) ≤ (κ(x, x)κ(y, y))1/2.

B. Proof of Theorem 2

Lemma 2 [16, Proposition A.1]: Let µ and ν denote the
largest and smallest eigenvalue of an n × n normalized kernel
matrix A, respectively; then

tr(Aα) ∈

{
[η, n1−α

], for α < 1
[n1−α, η], for α > 1

(2)

where

η =
1− νn
µ− ν

· µα
+

µn − 1
µ− ν

· να.

Furthermore, |log η| = �(|1− α|), and |log η| =

O(|1− α| log n).
Lemma 3 [16, Proposition III.1]: For any ϵ ∈ (0, 1) and

sufficient large n, if a randomized algorithm A can estimate
the trace of any n × n SPD matrix A to relative error 1 ± ϵ

with success probability at least 1 − δ using s queries, then
A can be used to estimate Sα(A) = (1/(1− α)) log tr(Aα)

to relative error 1 ± ϵ0 with the same success probability
using s queries, where ϵ = 1−min(η, 1/η)ϵ0 . Vice versa for
ϵ = max(nα−1, n1−α)ϵ0 − 1.

Proof of Theorem 2:
Proof: Let v = max j tr(Aα

j ), u = min j tr(Aα
j ), ρ = v/u,

ϵ0 = 1 − min(η, 1/η)ϵ , ϵ1 = ϵ0/ρ, and Bi = Aα
i /v for

all i ∈ [1, m]; we have ∥Bi∥∗ ≤ 1 for all i ∈ [1, m] and
∥Bi+1 − Bi∥ ≤ β for all i ∈ [1, m − 1]. By applying Lemma
1 with s0 = O

(
((1/δ)1/2/ϵ1)

)
and s = O

(
(((β/δ)1/2)/ϵ1)

)
on

matrices B1, . . . , Bm , we have
∣∣t̃r(Bi )− tr(Bi )

∣∣ ≤ ϵ1 for all
i ∈ [1, m], which means∣∣t̃r(Aα

i

)
− tr

(
Aα

i

)∣∣ ≤ ϵ1v ≤ ϵ0u ≤ ϵ0tr
(

Aα
i

)
, i ∈ [1, m].

Combining with Lemma 3, we have that for all i ∈ [1, m],
with probability at least 1 − δ, the approximation error∣∣S̃α(Ai )− Sα(Ai )

∣∣ ≤ ϵ · Sα(Ai ). By noticing that

ϵ0 = 1− exp(ϵ log min(η, 1/η))

= �(−ϵ log min(η, 1/η)) = �(ϵ|log η|)

and combine with Lemma 2, we have s0 =

O
(
((ρ(1/δ)1/2)/(ϵ|1− α|))

)
and s = O(((ρ(β/δ)1/2)/

(ϵ|1− α|))). For integer α ≥ 2, we have |1− α| = 2(1),
which completes the proof.

C. Proof of Theorem 3

Lemma 4 [16, Proposition A.6]: Let g be the linear
mapping [−1, 1] → [ν, µ] for arbitrary 0 < ν < µ < 1,
f (λ ) = λ α be the α-power function, and pt (λ ) be the
Chebyshev series of degree t = O

(
(µ/ν)1/2 log((µ/νϵ))

)
for

function f ◦ g; then, the following inequality holds:

max
x∈[−1,1]

|( f ◦ g)(x)− pt (x)| = max
λ∈[ν,µ]

∣∣ f (λ )− qt (λ )
∣∣ ≤ ϵνα

where qt = pt ◦ g−1.
Proof of Theorem 3:
Proof: Similar to the proof of Theorem 2, let v =

max j tr(Aα
j ), u = min j tr(Aα

j ), ρ = v/u, ϵ0 = 1 −
min(η, 1/η)ϵ , ϵ1 = ϵ0/3ρ, and ϵ2 = (1/2)ϵ0. By applying
Lemma 4 with t = O

(√
κ log((κ/ϵ2))

)
, we have

|tr(qt (A))− tr(Aα)| ≤

n∑
i=1

∣∣ f (λi )− qt (λi )
∣∣

≤ nϵ2ν
α
≤

ϵ0

2
· tr(Aα)

for any A ∈ {A1, . . . , Am}. By applying Lemma 1 with
s0 = O

(
(((1/δ)1/2)/ϵ3)

)
and s = O

(
(((β/δ)1/2)/ϵ3)

)
, where

ϵ3 = (1/3)ϵ1, we have that for all i ∈ [1, m], with proba-
bility at least 1 − δ, the approximation error is bounded by∣∣t̃r(qt (Ai ))− tr(qt (Ai ))

∣∣ ≤ ϵ3 ·max j tr(qt (A j )).
Noticing that tr(qt (Ai )) ≤ (ϵ0/2)tr(Aα

i ) + tr(Aα
i ) ≤

(3/2)tr(Aα
i ) and similarly tr(qt (Ai )) ≥ (1/2)tr(Aα

i ) for all
i ∈ [1, m], we have max j tr(qt (A j ))/ min j tr(qt (A j )) ≤ 3ρ

and∣∣t̃r(qt (Ai ))− tr
(

Aα
i

)∣∣ ≤ ∣∣t̃r(qt (Ai ))− tr(qt (Ai ))
∣∣

+
∣∣tr(qt (Ai ))− tr

(
Aα

i

)∣∣
≤

ϵ1

3
max

j
tr(qt (A j ))+

ϵ0

2
tr
(

Aα
i

)
≤

ϵ0

3
min

j
tr(qt (A j ))+

ϵ0

2
tr
(

Aα
i

)
≤ ϵ0 · tr

(
Aα

i

)
.

Combining with Lemma 3, we have
∣∣S̃α(Ai )− Sα(Ai )

∣∣ ≤ ϵ ·

Sα(Ai ) for all i ∈ [1, m].
Finally by applying Lemma 2, we have s0 =

O
(
((ρ(1/δ)1/2)/(ϵ|1− α|))

)
, s = O(((ρ(β/δ)1/2)/

(ϵ|1− α|))), and t = O
(√

κ log((κ/(ϵ|1− α|)))
)
, which

completes the proof.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on September 27,2023 at 13:43:32 UTC from IEEE Xplore.  Restrictions apply. 



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

D. Proof of Theorem 4

Problem 2: Let Alice and Bob be communicating parties
who hold vectors x ∈ {−1, 1}c and y ∈ {−1, 1}c, respectively.
The gap-Hamming problem asks Alice and Bob to return

1, if ⟨x, y⟩ ≥
√

c and − 1, if ⟨x, y⟩ ≤ −
√

c.
Lemma 5 [26, Th. 2.6]: The randomized communication

complexity for solving Problem 2 with probability at least
(2/3) is �(c) bits.

Proof of Theorem 4:
Proof: Consider Problem 2 with c = mw and w = nβ/2.

Let x = {x1, . . . , xc} and y = {y1, . . . , yc} be the held vectors;
then, by Lemma 5, the lower bound of solving Problem 2 is
�(c) = �(mnβ) bits.

Let xi = {x(w(i−1) mod c)+1,
x(w(i−1)+1 mod c)+1, . . . , x(w(i−1)+n mod c)+1}, i ∈ [1, m],
be cyclic sliding windows of x and define yi in the same way.
Let X i ∈ {−1, 1}

√
n×
√

n and Yi ∈ {−1, 1}
√

n×
√

n contain the
entries of xi and yi rearranged into matrices. Let Z i = X i+Yi

and let Ai = Z⊤i Z i . Similarly, we construct X–Z by entries
of x and y. Then, A and Ai are positive semidefinite for all
i ∈ [1, m] and

tr(Ai ) = ∥Z i∥
2
F = ∥xi + yi∥

2
2

= ∥xi∥
2
2 + ∥yi∥

2
2 + 2⟨xi , yi ⟩

= 2n + 2⟨xi , yi ⟩ ≤ 4n
|tr(Ai+1)− tr(Ai )| = |2⟨xi+1, yi+1⟩ − 2⟨xi , yi ⟩| ≤ 8w

tr(A) = ∥Z∥2
F = ∥x+ y∥2

2

= ∥x∥2
2 + ∥y∥

2
2 + 2⟨x, y⟩

= 2mw + 2⟨x, y⟩.

Normalizing the matrices A1, . . . , Am with 4n, we have

tr(Ai/4n) ≤ 1
|tr(Ai+1/4n)− tr(Ai/4n)| ≤ 8w/4n = β.

Noticing that we can get tr(A) by summing up tr(Ai )

m∑
i=1

tr(Ai ) = 2nm + 2
m∑

i=1

⟨xi , yi ⟩

= 2nm +
2m
w
⟨x, y⟩ = tr(A)/β.

If ⟨x, y⟩ ≥
√

mw, we have tr(A) ≥ 2mw + 2
√

mw, and
if ⟨x, y⟩ ≤ −

√
mw, we have tr(A) ≤ 2mw − 2

√
mw. So,

if Alice and Bob can approximate all tr(Ai/4n) to relative
error 1 ± 1/

√
mw with s matrix-vector multiplications, they

can approximate tr(A) to the same relative error and solve
Problem 2. It is proven in [20] that they can do so with
O(s ·

√
n(log n + b)) bits of communication if the possibly

adaptively chosen vectors have integer entries bounded by
2b. Combining with the �(mw) lower bound for Problem 2,
we have that s = �

(
(
√

mβ/(ϵ(log(1/mβϵ)+ b)))
)

queries
are needed to approximate all tr(Ai/4n) to accuracy 1 ± ϵ for
ϵ = 1/

√
mw, with probability at least (2/3).

E. Proof of Corollary 1

Proof: Let ϵ0 = max(nα−1, n1−α)ϵ − 1 ≤ ϵ|1− α| log n.
From Lemma 3, we know that if we can approximate all

Sα(Ai ) to relative error ϵ with s matrix-vector multiplications,
then we can approximate all tr(Ai ) to relative error ϵ0.
Combining with Theorem 4, we get the final lower bound

s = �

( √
mβ

ϵ0(log(1/mβϵ0)+ b)

)
= �

( √
mβ

ϵ|1− α| log n(log(1/mβϵ|1− α| log n)+ b)

)
.
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