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Optimal Randomized Approximations for
Matrix-Based Rényi’s Entropy

Yuxin Dong , Tieliang Gong , Shujian Yu, and Chen Li

Abstract— The Matrix-based Rényi’s entropy enables us to
directly measure information quantities from given data without
the costly probability density estimation of underlying distri-
butions, thus has been widely adopted in numerous statistical
learning and inference tasks. However, exactly calculating this
new information quantity requires access to the eigenspectrum
of a semi-positive definite (SPD) matrix A which grows lin-
early with the number of samples n, resulting in a O(n3)
time complexity that is prohibitive for large-scale applications.
To address this issue, this paper takes advantage of stochastic
trace approximations for matrix-based Rényi’s entropy with
arbitrary α ∈ R+ orders, lowering the complexity by converting
the entropy approximation to a matrix-vector multiplication
problem. Specifically, we develop random approximations for
integer-order α cases and polynomial series approximations
(Taylor and Chebyshev) for fractional α cases, leading to a
O(n2sm) overall time complexity, where s,m ≪ n denote
the number of vector queries and the polynomial order respec-
tively. We theoretically establish statistical guarantees for all
approximation algorithms and give explicit order of s and m
with respect to the approximation error ϵ, showing optimal
convergence rate for both parameters up to a logarithmic factor.
Large-scale simulations and real-world applications validate the
effectiveness of the developed approximations, demonstrating
remarkable speedup with negligible loss in accuracy.

Index Terms— Matrix-based Rényi’s entropy, randomized
numerical linear algebra, trace estimation, polynomial approxi-
mation, mutual information.
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I. INTRODUCTION

THE Rényi’s α-order entropy, introduced by Alfred
Rényi [1], serves as a one-parameter generalization of

the well-known Shannon’s entropy. Following Rényi’s work,
extensive studies have been conducted in machine learning
and statistical inference tasks, demonstrating elegant prop-
erties and impressive scalability [2], [3], [4], [5]. However,
its heavy dependence on the underlying data distributions
makes the estimation of high-dimensional probability density
functions (PDF) inevitable, which is especially expensive or
even intractable due to the curse of high-dimensionality [6].

Recently, the matrix-based Rényi’s entropy [4], [7] is intro-
duced as a substitution that can be quantified directly from
given data samples. Inspired by the quantum generalization
of Rényi’s definition [8], this new family of information
measures is defined on the eigenspectrum of a normalized
Hermitian matrix constructed by projecting data points in
reproducing kernel Hilbert space (RKHS), thus avoiding
explicit estimation of underlying data distributions. Because
of its intriguing property in high-dimensional scenarios, the
matrix-based Rényi’s entropy, and mutual information have
been successfully applied in various data science applications,
ranging from classical dimensionality reduction [9] and feature
selection [10] problems to advanced deep learning problems
such as robust learning against covariant shift [5], network
pruning [11] and knowledge distillation [12].

Nevertheless, calculating this new information measure
requires complete knowledge about the eigenspectrum of a
Gram matrix, whose size grows linearly with the number
of samples n, resulting in a O(n3) time complexity with
traditional eigenvalue algorithms including eigenvalue decom-
position, singular value decomposition, CUR decomposition,
and QR factorization [13], [14], greatly hampering its practical
applications on large-scale datasets.

To address this issue, we develop efficient approximations
for matrix-based Rényi’s entropy from the perspective of
randomized numerical linear algebra. Motivated by the recent
advancement of a variance-reduced stochastic trace estimator
named Hutchinson++ (Hutch++) [15], we decompose the
kernel matrix A by randomly projecting it into an orthog-
onal subspace which holds the largest eigenvalues with high
probability, and the counterpart that holds smaller eigenvalues.
Their traces are then exactly calculated and approximated
by the original Hutchinson algorithm respectively, leading to
an optimal O(1/ϵ) convergence rate in terms of the number

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on June 20,2023 at 02:23:25 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-4475-5056
https://orcid.org/0000-0002-3840-441X
https://orcid.org/0000-0002-0079-3106


DONG et al.: OPTIMAL RANDOMIZED APPROXIMATIONS FOR MATRIX-BASED RÉNYI’S ENTROPY 4219

of vector queries. We further develop polynomial expansion
techniques including Taylor and Chebyshev series to approx-
imate arbitrary matrix power functional in Rényi’s entropy.
We theoretically analyze the quality-of-approximation results
and conduct large-scale experiments to validate the effective-
ness of the proposed approaches. Our main contributions in
this work are threefold:
• We develop efficient approximations for matrix-based

Rényi’s entropy with randomized trace estimation and
polynomial approximation techniques. Our algorithms
reduce the overall time complexity from O(n3) to
O(n2sm) (s, m ≪ n) and support arbitrary α values.

• We theoretically establish both upper and lower bounds
for approximation accuracy, showing that the convergence
rates O(1/ϵ) and O(

√
κ) (κ is the condition number of

A) w.r.t s and m respectively are nearly optimal up to a
logarithmic factor in terms of approximation error.

• We evaluate our algorithms on large-scale simulation
datasets and real-world information-theoretic machine
learning tasks, demonstrating promising speedup with
negligible loss in validation accuracy.

II. PRELIMINARIES

Shannon’s entropy is one of the most commonly used
measures of the randomness given the PDF p(x) for a given
continuous random variable X that values in a finite set X :

H(X) = −
∫
X

p(x) log p(x) dx.

A popular generalization is the Rényi’s α-order entropy
Hα(X) of order α > 0 and α ̸= 1:

Hα(X) =
1

1− α
log
∫
X

pα(x) dx, (1)

Rényi entropy covers a family of different entropy measures
through the hyper-parameter α, including Shannon entropy
(α → 1), Min entropy (α → ∞), and Collision entropy
(α = 2), making it widely adopted in machine learning
and statistical inference tasks. It is easy to see that both
Shannon’s entropy and Rényi’s entropy require knowledge
about data distributions, which hampers its application in
high-dimensional scenarios. To solve this issue, Giraldo et al.
proposed an alternative entropy measure that enables direct
quantification from given data:

Definition 1 [7]: Let ϕ : X × X 7→ R be a real-valued
positive kernel that is also infinitely divisible [16]. Given
{xi}n

i=1 ⊂ X , each xi being a real-valued scalar or vector, and
the Gram matrix K obtained from Kij = ϕ(xi,xj), a matrix-
based analogue to Rényi’s α-entropy can be defined as:

Sα(A) =
1

1− α
log(tr(Aα)) =

1
1− α

log

[
n∑

i=1

λα
i (A)

]
,

where Aij = 1
n

Kij√
KiiKjj

is a normalized kernel matrix and

λi(A) denotes the i-th eigenvalue of A.
It is worth noting that the infinitely divisible condition

imposed on kernel function is more strict than semi-definite

positive. In practice, one can select Gaussian kernel (or poly-
nomial kernel with even-order) to calculate matrix-based
Rényi’s entropy. The normalization ensures that the symmetric
semi-positive definite (SPD) kernel matrix A has unit trace,
then its eigenvalues are in [0, 1] and satisfies

∑n
i=1 λi(A) =

tr(A) = 1. Therefore, the eigenvalues of A form a discrete
probability distribution and serves as a natural density estima-
tor for the random variable used to generate the samples {xi}.
We denote the minimum and maximum eigenvalue of A as u ∈
[0, 1/n] and v ∈ [1/n, 1] respectively, and the corresponding
condition number is then κ = v/u. In numerical scenarios, the
power iteration and Lanczos iteration are effective algorithms
for calculating u and v in O(d·nnz(A)), where nnz(·) denotes
the number of non-zero elements in a matrix and d is the
number of iterations.

Definition 2 [10]: Let ϕ1 : X 1 × X 1 7→ R, · · · , ϕL :
XL × XL 7→ R be positive infinitely divisible kernels and
{x1

i , · · · ,xL
i }n

i=1 ⊂ X 1 × · · · × XL be a collection of n
samples, a matrix-based analogue to Rényi’s α-order joint
entropy among L variables can be defined as:

Sα(A1, · · · , AL) = Sα

(
A1 ◦ · · · ◦AL

tr(A1 ◦ · · · ◦AL)

)
, (2)

where A1, · · · , AL are normalized kernel matrices and
◦ denotes the Hadamard product.

Within these settings, the matrix-based Rényi’s α-order con-
ditional entropy Sα(A1, · · · , Ak|B) and mutual information
Iα({A1, · · · , Ak}; B) between variables x1, · · · ,xk and y can
be defined as:

Sα(A1, · · · , Ak|B) = Sα(A1, · · · , Ak, B)− Sα(B), (3)
Iα({A1, · · · , Ak}; B) = Sα(A1, · · · , Ak)

− Sα(A1, · · · , Ak|B), (4)

where A1, · · · , Ak and B are corresponding kernel matrices
constructed from x1, · · · ,xk and y. As we can see, the
matrix-based Rényi’s entropy functionals above avoid the
estimation of underlying data distributions, which makes them
easily applicable in high-dimensional scenarios. Moreover, it is
simple to verify that they are permutation invariant to the
ordering of variables A1, · · · , Ak. The matrix-based Rényi’s
mutual information has been successfully applied in feature
selection tasks [10] by maximizing the multivariate mutual
information I(Ssub; Y ), where Ssub is a subset of all features
and Y is the target label. Also, the matrix-based entropy
functional has recently been demonstrated to be differentiable,
which makes it suitable to be used to train neural networks
combining with the information bottleneck objective [5]:

LIB = I(Y ; T )− β · I(X; T ), (5)

where X , Y , and T are the input, the output, and an interme-
diate representation of the neural network.

The scalability to high-dimensional space and the differen-
tiable property also make matrix-based Rényi’s entropy func-
tional to be used in other challenging applications involving
deep neural networks. For example, in terms of knowledge
distillation, [12] directly applies matrix-based Rényi’s mutual
information (i.e., Eq. (4)) as a new regularization term to
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maximize the dependence between the student and teacher
representations from samples in a mini-batch. In terms of
network pruning (i.e., removing redundant filters in a large
convolutional neural network), [11] uses matrix-based Rényi’s
mutual information to quantify the relevance between the
responses of each filter and class labels, and then straightfor-
wardly prunes filters with the least mutual information values.

Despite the empirical success of the matrix-based Rényi’s
entropy functional in the above-mentioned applications, the
high computational complexity of this new information
measure severely impedes its wider range of applications,
especially in the cases that the number of samples or the mini-
batch size is large. This limitation motivates our work to speed
up its computation with theoretical guarantees. Stochastic
trace estimation techniques have been previously explored to
accelerate the calculation of the trace of large matrices, where
the Hutchinson estimator is one of the commonly adopted
trace estimation techniques. By generating a series of random
vectors {gi}s

i=1 with i.i.d. {±1} entries, [17] proved that by
taking s = O(log(1/ϵ)/ϵ2), with probability at least 1− δ:∣∣∣∣∣tr(A)− 1

s

s∑
i=1

g⊤i Agi

∣∣∣∣∣ ≤ ϵ · tr(A).

III. APPROXIMATION ALGORITHMS

In this section, we aim to develop efficient approximations
for matrix-based Rényi’s entropy from the perspective of
randomized numerical linear algebra. Intuitively, the entropy
approximation problem is closely related with the well-
known trace estimation problem, as stated in the following
proposition:

Proposition 3: For any ϵ0 ∈ (0, 1) and sufficient large
n, if a randomized algorithm A produces a (1 ± ϵ0)-
approximation for tr(A) (where A is n×n SPD matrix) using
s queries with probability at least 1 − δ, then A produces a
(1 ± ϵ)-approximation for Sα(A) = 1

1−α log tr(Aα) using
s queries with the same probability, where ϵ0 = 1 −
min(µ, 1/µ)ϵ and

µ =
1− un

v − u
· vα +

vn− 1
v − u

· uα.

Vice versa for ϵ0 = max(nα−1, n1−α)ϵ − 1.
Indeed, Proposition 3 shows that the trace estimation prob-

lem is equivalent to matrix-based Rényi’s entropy approx-
imation. Typical choices of A include the Gaussian trace
estimator and Hutchinson estimator [18], which can generate
unbiased estimates to tr(A). Compared to these methods, the
recently developed randomized trace estimator Hutch++ [15]
further utilizes the positive semi-definiteness property of A and
achieves substantially lower estimation variance. By decom-
posing the kernel matrix A into a randomized orthogonal
subspace Q and its complement I−QQ⊤, Hutch++ achieves
nearly optimal convergence rate in terms of the number of
vector queries s as shown in Algorithm 1.

In particular, by taking f(A) = Aα, Algorithm 1 generates
a (1 ± ϵ)-approximation for Sα(A) with high probability,
converting the entropy estimation problem into matrix-vector
multiplications operations and reduces the overall complexity

Algorithm 1 Hutch++ Algorithm for Implicit Matrix Trace
Estimation [15]

1: Input: Kernel matrix A ∈ Rn×n, number of random
vectors s(s ≪ n), positive matrix function f(A).

2: Output: Approximation to tr(f(A)).
3: Sample S ∈ Rn× s

4 , G ∈ Rn× s
2 from i.i.d. standard

Gaussian distribution.
4: Compute an orthonormal basis Q ∈ Rn× s

4 for the span of
AS via QR decomposition.

5: Return: Z = tr
(
Q⊤f(A)Q

)
+ 2

s tr
(
G⊤(I −QQ⊤)f(A)(I −QQ⊤)G

)
.

to O(s · nnz(A)), substantially lower than traditional O(n3)
eigenvalue based approaches.

A. Integer Order Approach

When α ∈ N, for any real-valued vector g, Aα · g could be
directly calculated by multiplying A with a vector for α times.
This observation gives Algorithm 2 for integer order Rényi’s
entropy estimation:

Algorithm 2 Integer Order Matrix-Based Rényi’s Entropy
Estimation

1: Input: Kernel matrix A ∈ Rn×n, number of random
vectors s, integer order α ≥ 2.

2: Output: Approximation to Sα(A).
3: Run Hutch++ with f(A) = Aα and s random vectors.
4: Return: S̃α(A) = 1

1−α log(Hutch++(Aα)).

Theorem 4: Let S̃α(A) be the output of Algorithm 2 with
s = O

(
1
ϵ

√
log
(

1
δ

)
+ log

(
1
δ

))
, then with probability at least

1− δ: ∣∣∣S̃α(A)− Sα(A)
∣∣∣ ≤ ϵ · Sα(A).

Remark 3: Theorem 4 establishes the main quality-of-
approximation result for Algorithm 2, that a s with order
O(1/ϵ) is sufficient to guarantee the approximation error with
high probability. Algorithm 2 finishes in O(αs · nnz(A)),
which is substantially lower than eigenvalue decomposition
algorithms.

B. Taylor Series Approach

The fractional order of α may constantly be come across
in real-world applications [10] depending on the specific
tasks. For example, [5] and [19] recommend α = 1.01 to
approximate Shannon entropy. In this circumstance, obtaining
an exact value of Aα · g is not feasible for random vector g.
An ideal workaround is to adopt a Taylor expansion on the
power term Aα:

(1 + x)α =
∞∑

k=0

(
α

k

)
xk, x ∈ [−1, 1]
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Taking v as the largest eigenvalue of A, eigenvalues of
A/v − In are in [−1, 0]. Then Aα can be expanded as:

Aα = vα
∞∑

k=0

(
α

k

)
(A/v − In)k

.

An approximation to Aα·g is now available by calculating A·g,
A2 · g, · · · in sequence. By selecting the first m major terms
in the polynomial expansion above, we have Algorithm 3 for
fractional order Rényi’s entropy estimation:

Algorithm 3 Fractional Order Matrix-Based Rényi’s Entropy
Estimation via Taylor Series

1: Input: Kernel matrix A ∈ Rn×n, number of random vec-
tors s, fractional order α, polynomial order m, eigenvalue
upper bound v.

2: Output: Approximation to Sα(A).
3: Run Hutch++ with f(A) = vα

∑m
k=0

(
α
k

)
(A/v − In)k

and s random vectors.
4: Return: S̃α(A) = 1

1−α log(Hutch++(Aα)).

Theorem 4: Let S̃α(A) be the output of Algorithm 3 with

s = O
(

1
ϵ|α−1|

√
log
(

1
δ

)
+ log

(
1
δ

))
,

m = O
(
κ log

(
1

ϵ|α−1|

))
,

where κ = v/u is the condition number of A, then for any
normalized kernel matrix A with eigenvalues in [u, v], with
probability at least 1− δ:∣∣∣S̃α(A)− Sα(A)

∣∣∣ ≤ ϵ · Sα(A).

Remark 5: Theorem 4 presents the relative error bound for
Algorithm 3, where explicit order of s and m are given to
guarantee the approximation accuracy. Specifically, s is scaled
by a coefficient 1/|α− 1| compared to Theorem 4, and m is
positively related to the condition number κ. Algorithm 3
finishes in O(ms · nnz(A)) with m, s ≪ n.

The analysis above requires u > 0, i.e. the kernel matrix
has full rank. However, this requirement is hard to be satisfied
in some machine learning tasks e.g. RKHS transporting and
dimension reduction [20], [21], where rank-deficient matrices
are frequently encountered. To account for this, we establish
the following theorem:

Theorem 6: Let S̃α(A) be the output of Algorithm 3 with

s = O
(

1
ϵ|α−1|

√
log
(

1
δ

)
+ log

(
1
δ

))
,

m = O
(
(vn)

1
min(1,α) α

√
1

ϵ|α−1|

)
,

then for any normalized kernel matrix A with eigenvalues in
[0, v], with probability at least 1− δ:∣∣∣S̃α(A)− Sα(A)

∣∣∣ ≤ ϵ · Sα(A).

Remark 7: When u = 0, due to the existence of a singular
point in f(x) = xα at x = 0, a logarithmic convergence
rate is no longer achievable. The polynomial approximation
error is now dominated by ϵ instead of κ. The coefficient vn
corresponds to the rare worst case when the eigenvalues of A
all equal 1/n, or are all in {0, v}.

C. Chebyshev Series Approach

Chebyshev expansion is an advanced technique to approx-
imate analytic functions and often enjoys better theoretical
properties. For some continuous function f : [−1, 1] → R,
it is defined as

f(x) =
c0

2
+

∞∑
k=1

ckTk(x), x ∈ [−1, 1]

where Tk+1(x) = 2xTk(x) − Tk−1(x) for k ≥ 1, T0(x) =
1 and T1(x) = x. By taking the first m terms, the coefficients
ck, k = 0, · · · , m could be calculated as

ck =
2

m + 1

m∑
i=0

f(xi)Tk(xi),

where xi = cos
(
π(i+1/2)/(m+1)

)
. Through a combination

with linear mapping g: [−1, 1] → [u, v], we can now approx-
imate f(λ) = λα for any λ ∈ [u, v] with T̂k = Tk ◦ g−1,
k = 0, · · · , m, as shown in Algorithm 4.

Algorithm 4 Fractional Order Matrix-Based Rényi’s Entropy
Estimation via Chebyshev Series

1: Input: Kernel matrix A ∈ Rn×n, number of random vec-
tors s, fractional order α, polynomial order m, eigenvalue
lower & upper bounds u, v.

2: Output: Approximation to Sα(A).
3: Run Hutch++ with f(A) = c0/2 +

∑m
k=1 ckT̂k(A) and

s random vectors.
4: Return: S̃α(A) = 1

1−α log(Hutch++(Aα)).

Theorem 8: Let S̃α(A) be the output of Algorithm 4 with

s = O
(

1
ϵ|α−1|

√
log
(

1
δ

)
+ log

(
1
δ

))
,

m = O
(√

κ log
(

κ
ϵ|α−1|

))
,

where κ = v/u is the condition number of A, then for any
normalized kernel matrix A with eigenvalues in [u, v], with
probability at least 1− δ:∣∣∣S̃α(A)− Sα(A)

∣∣∣ ≤ ϵ · Sα(A).

Remark 9: Theorem 8 requires only O(
√

κ) polyno-
mial terms to guarantee the approximation accuracy for
Algorithm 4 in the case that A is well-conditional, comparing
to Theorem 4 which require O(κ) to achieve the same approx-
imation accuracy. Moreover, Algorithm 4 requires estimation
of u, which is generally more difficult than estimating v
because of its small magnitude.

Similarly, we establish the error bound of the Chebyshev
series for rank-deficient kernel matrices.

Theorem 10: Let S̃α(A) be output of Algorithm 4 with

s = O
(

1
ϵ|α−1|

√
log
(

1
δ

)
+ log

(
1
δ

))
,

m = O
(
(vn)

1
2 min(1,α) 2α

√
1

ϵ|α−1|

)
,
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then for any normalized kernel matrix A with eigenvalues in
[0, v], with probability at least 1− δ:∣∣∣S̃α(A)− Sα(A)

∣∣∣ ≤ ϵ · Sα(A).

Remark 11: Compared with Theorem 6, Algorithm 4 within
rank deficient case still achieves better theoretical guarantees
from all perspectives.

D. Connection With the Lanczos Method

Besides polynomial approximation, an alternative approach
for approximating matrix functions is the Lanczos
method [22]: given implicit matrix f(A) and arbitrary
vector b, an approximation of f(A) · b is acquired by linear
interpolation in the Krylov subspace {b, A · b, · · · , Am · b}.
It could be regarded as an adaptive polynomial approximation
technique, where the coefficients are chosen according to
the given matrix f(A) and vector b. However, this approach
does not achieve any faster convergence rate than explicit
polynomial approximation: as pointed out in [23], the block
Lanczos method achieves exactly the same upper bound
O(
√

κ log(κ/ϵ)) as Chebyshev series in terms of subspace
dimension, while requiring additional O(nms) memory to
store the block vectors in each step [22]. Moreover, the
lower bound of the Lanczos method is also closely related
to the lower bound of polynomial approximation [24], which
will be discussed in the next section. Nevertheless, elaborate
descriptions of this topic are beyond the scope of the current
research, we leave this problem for future research.

IV. LOWER BOUNDS

So far, we have established approximation algorithms for
matrix-based Rényi’s entropy and evaluated their theoretical
properties. A natural question is if the O(1/ϵ), O(

√
κ) or

O( 2α
√

1/ϵ) upper bounds in our previous analysis are tight.
In this section, we will prove that up to a logarithmic factor,
they are consistent with theoretical lower bounds.

In Proposition 3, we show that an effective trace approxima-
tor implies an effective approximator for matrix-based Renyi’s
entropy. Based on the lower bound of randomized implicit
trace estimation in fixed precision model [15], we obtain the
lower bound of required matrix-vector multiplication queries
s by complexity reduction:

Theorem 11: Any algorithm that accesses a normalized
n×n kernel matrix A via matrix-vector multiplication queries
Ar1, · · · , Arm, where r1, · · · , rm are possibly adaptively cho-
sen randomized vectors under limited precision computation
model, requires s = Ω

(
1

ϵ|α−1| log n log(1/ϵ|α−1| log n)

)
such

queries to output an estimate Z so that, with probability at
least 2

3 , |Z − Sα(A)| ≤ ϵ · Sα(A) for arbitrary α > 0.
Remark 12: Note that the lower bound s = Ω(1/ϵ) matches

our previous results up to a log(1/ϵ) factor, which means our
error bounds are nearly-optimal. Moreover, the scaling term
1/(1 − α) implies that precise approximation is impossible
when α → 1. This observation is confirmed in our simulation
studies (Section V-A).

Next, by applying the theory of best uniform approximation
error, we establish the lower bounds for the required number
of terms m in polynomial approximation. Given a continuous
real function f defined on [−1, 1], denote the m-terms best
uniform approximation of f by pm, then:

∥f − pm∥ = min
p∈Pm

∥f − p∥,

where ∥·∥ denotes the uniform norm and Pm is the linear
space of all polynomials with a degree at most m. Based on
previous theoretical analysis of function f(x) = xα [25], [26],
[27], [28], we obtain:

Theorem 13: There exists a positive decreasing function
ϵ0 : R+ → R+ such that for arbitrary 0 < u <
v < 1 and 0 < ϵ < ϵ0(v/u), any polynomial pm that
approximates matrix function f(A) = Aα, requires m =
Ω
(√

κ log
(

1
κϵ|α−1| log n

))
degree to achieve∣∣∣∣ 1

1− α
log
(
tr(pm(A))

)
− Sα(A)

∣∣∣∣ ≤ ϵ · Sα(A),

for any positive definite matrix A with all eigenvalues in [u, v]
and tr(A) ∈ [1, 2], where κ = v/u.

Theorem 14: For arbitrary v > 0 and small enough ϵ, any
polynomial pm that approximates matrix function f(A) = Aα,

requires m = Ω
(

2α

√
1

ϵ|α−1| log n

)
degree to achieve∣∣∣∣ 1

1− α
log
(
tr(pm(A))

)
− Sα(A)

∣∣∣∣ ≤ ϵ · Sα(A),

for any positive semi-definite matrix A with all eigenvalues in
[0, v] and tr(A) ∈ [1, 2].

Remark 15: Theorem 13 and 14 present the lower bound
for polynomial approximation in fractional order Rényi’s
entropy estimation. Also, these bounds indicate the near-
optimality of Algorithm 4 in consideration of the results in
Theorem 8 and 10.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of pro-
posed approximations implemented in C++ using Eigen [29].
Numerical studies are conducted on an Intel i7-10700
(2.90GHz) CPU with 64GB of RAM, with deep learning mod-
els trained on an RTX 2080Ti GPU. We give comprehensive
experimental results for both synthetic data and real-world
information-related tasks.

A. Simulation Studies

In the following simulation experiments, we generate syn-
thetic data points by a mixture of Gaussian distribution
1
2N(−1, Id) + 1

2N(1, Id) with n = 5, 000 and d = 10,
where Id is an identity matrix of size d, resulting in a
5, 000×5, 000 kernel matrix size. Gaussian kernel ϕ(xi,xj) =
exp(−∥xi−xj∥22/2σ2) with σ = 1 is adopted in matrix-based
Rényi’s entropy quantification. For each benchmark, we report
the mean relative error (MRE) and corresponding standard
deviation (SD) of approximation results after K = 100 trials.
The oracle Sα(A) is computed through the direct O(n3)
eigenvalue approach.
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Fig. 1. Number of random vectors s versus MRE curves for integer α-order
Rényi’s entropy estimation.

Fig. 2. α versus MRE curves for fractional α-order Rényi’s entropy
estimation algorithms.

1) Integer Order Approximation: We first evaluate the per-
formance of Algorithm 2 for integer-order entropy estimation.
We report the s versus MRE curves for α ∈ {2, 3, 5, 8},
where the number of random vectors s ranges from 10 to
150, as shown in Figure 1. The shaded area indicates the
corresponding SD of MRE. We observe a linear relationship
between s and MRE as expected. It is worth noting that
we achieve a 0.1% relative error with only s = 10 random
vectors, which costs roughly 1.2 seconds of running time for
α = 2. For comparison, the trivial eigenvalue approach takes
27 seconds to obtain a complete eigenvalue decomposition.

2) Fractional Order Approximation: We further evaluate
the Taylor and Chebyshev algorithms for fractional α orders.
The results on describing the impact of α on approximation
MRE with m = 20 and s = 100 are reported in Figure 2.
As expected, MRE curves grow with the increase of α for
α < 1 and decrease otherwise. This phenomenon is because
of the | 1

1−α | coefficient in our previous theoretical analysis.
When α is close to 1, this term dominates the approximation
error.

We next explore the influence of different condition numbers
κ in polynomial approximation. Here we set α = 1.5, s = 100,
and m ranges from 10 to 50, with adjusted width parameter
σ in Gaussian kernel to control the eigenspectrum. It can be
seen from Figure 3 that the polynomial terms m required by
Taylor approximation is larger than that of Chebyshev approx-
imation for relatively large κ, which verifies our findings in
Theorem 4 and 8. For smaller κ, the two approaches yield
comparable results. Reminding that the Taylor series does not
require estimation of u, it is thus more suitable for kernel
matrices with flat eigenspectrum.

Fig. 3. Number of polynomial terms m versus MRE curves for different
condition numbers κ.

Fig. 4. Number of polynomial terms m versus MRE curves for rank deficient
kernel matrices.

We further investigate the rank-deficient circumstances.
We adopt the polynomial kernel ϕ(xi,xj) = (x⊤i xj +r)p with
p = 2, r = 1 to fulfill the infinitely divisible requirement, and
set d = 98 to retain roughly 1% of the eigenvalues to be zero.
We find that the Chebyshev approximation still outperforms
the Taylor approach in terms of MRE with small m values,
as shown in Figure 4.

Finally, we report the experimental results of both algo-
rithms for different α values. We set σ = 1 in the Gaussian
kernel and s varies from 10 to 150. For the Taylor approach,
we set m = 40 and for Chebyshev, we set m = 15.
From Figure 5, we can see that the two approaches achieve
similar performance in this setting. Also, we get a relatively
higher MRE for α near 1 (α = 0.8), the same as we have
discussed before. In this sense, we recommend a combination
of s = 50 and m = 15 that takes 3 seconds to achieve a
10−3 relative error for most circumstances, leading to 9 times
speedup compared with the trivial eigenvalue approaches. For
larger kernel matrices, this advantage could be even more
pronounced.

B. Real Data Studies

In real-world data-driven applications, the extended entropy
measures including Rényi’s α-order joint entropy (2), con-
ditional entropy (3) and mutual information (4) enable
much wider adoption of information-based machine learning
tasks. By approximating the trace of the joint kernel matrix
A1 ◦ · · · ◦AL in (2), our approximations algorithms are imme-
diately applicable to these extended information measures.

In this section, we will demonstrate the performance of our
algorithms on these novel extensions by three representative
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Fig. 5. Number of random vectors s versus MRE curves for fractional α-order Rényi’s entropy estimation.

real-world applications, which accelerate, respectively, the
computation of entropy (in neural network parameterization
of information bottleneck), mutual information (in feature
ranking), and multivariate mutual information (in feature selec-
tion). We select σ = 1 in the Gaussian kernel and α = 2 for
simplicity.

1) Parametrization of Information Bottleneck by Neural
Networks: The Information Bottleneck (IB) objective was first
introduced by [30] and has recently been adopted in deep
network training to learn either stochastic or deterministic
compressed yet meaningful representations [19], [31], [32].
Denoting X as the input and Y as the target label, the IB
approach learns an intermediate representation T that balances
the trade-off between the predictive performance of T on task
Y (quantified by I(Y ; T )) and the complexity of T (quantified
by I(X; T )) (see eq. (5)), where β is a hyper-parameter that
balances I(Y ; T ) and I(X; T ). There are different ways to
parameterize IB by neural networks. In general, the max-
imization of I(Y ; T ) is equivalent to the minimization of
cross-entropy (CE) loss [33], [34]. On the other hand, for
a deterministic and feed-forward neural network, we have
I(X; T ) = H(T ),1 the entropy of latent representation T

[34], [35]. Therefore, the objective (5) can be transferred to
minimization of CE loss with an additional regularization on
the entropy of T 2:

LDIB = min CE + β ·H(T ), (6)

which is also called the deterministic IB (DIB) [19], [38].
If we optimize DIB with the matrix-based entropy functional,
it can be simply parameterized by a deep neural network with
gradient-based optimization. The training can be significantly
accelerated by approximating the trace of the kernel matrix
constructed from T .

We term our method the Approximated DIB (ADIB) and
compare it with the classic variational IB (VIB) [33] and
the original DIB [19] that also uses the matrix-based entropy
functional without any fast approximations. We follow the

1This is just because for a deterministic mapping from X to T , there is no
uncertainty about T given X . Hence, H(T |X) = H(T )− I(X; T ) = 0.

2The same strategy has also been used in recent deep IB approaches, such
as [36] and [37].

TABLE I
TEST ERROR AND TIME SPENT FOR DIFFERENT METHODS ON

CIFAR-10. RIGHT IS THE TOTAL TIME OF NETWORK TRAINING,
WHILE LEFT IS THE TIME SPENT SOLELY ON CALCULATING IB.

THE NUMBER QUOTED INDICATES CORRESPONDING
α VALUE IN RÉNYI’S ENTROPY

TABLE II
NUMBER OF INSTANCES (#I), FEATURES (#F), AND CLASSES (#C)

OF CLASSIFICATION DATASETS USED IN FEATURE SELECTION
AND RANKING EXPERIMENTS, AND THE CORRESPONDING

RUNNING TIME OF RMI AND ARMI

experiment settings in [19], where VGG16 [39] and CIFAR-10
are selected as the backbone network and classification dataset
respectively. The last fully-connected layer in VGG before
the softmax layer is selected as the bottleneck T . All models
are trained with 400 epochs, 0.1 initial learning rate which is
reduced by a factor of 10 every 100 epochs, and 100 batch size
such that the kernel matrix in Rényi’s entropy is 100×100. The
performance of DIB and ADIB are evaluated with number of
random vectors s = 10 and β = 0.01. The final classification
accuracy and time spent on calculating IB / training networks
are reported in Table I. Our ADIB significantly outperforms
CE and VIB in terms of classification accuracy. It also achieves
comparable performance to the original DIB with significantly
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TABLE III
THE BEST CLASSIFICATION ERROR (%) ACHIEVED BY EACH FEATURE RANKING (THE UPPER HALF) AND FEATURE SELECTION (THE LOWER HALF)

METHODS FOR k = 10 FEATURES. THE LAST COLUMN INDICATES THE AVERAGE RANKING OF DIFFERENT METHODS ON OUR TEST BENCHMARK

less computational time (which saves nearly 1 hour of training
time). Note that, this speedup could be enhanced further by
using a larger batch size, which is a common choice in modern
fine-tuning techniques [40].

2) Application to Feature Ranking: Given a set of features
S = {X1, · · · , Xn}, the feature selection task aims to find the
smallest subset Ssub that maximizes the relevance of the label
Y . From an information-theoretic perspective, an ultimate goal
is to maximize the multivariate mutual information I(Ssub; Y ),
which is however usually impractical in real-world scenarios
because of the curse of dimensionality and the difficulty of
global optimization.

Feature ranking is a simple yet effective alternative to
feature selection. Using the weight wi = I(Xi; Y ) for each
feature Xi ∈ S, ranking methods quantify the effectiveness of
each feature individually and select the most important features
upon two-dimensional probability distributions, which is much
easier to estimate in practice. However, they ignore informa-
tion redundancy and synergy between different features, which
usually yields suboptimal performances.

We compare matrix-based Rényi’s mutual information
(RMI, (4)) and our Approximated RMI (ARMI) with
5 state-of-the-art information-theoretic feature ranking meth-
ods, namely Asymmetric Dependency Coefficient (ADC) [41],
Normalized First-Order Information Gain (NFIG) [42], Sym-
metrical Uncertainty (SU) [43], Distance-based Attribute
Selection (DAS) [44] and Weighted Joint Entropy (WJE) [45].
8 well-known classification datasets used in previous works
constitute our experiment benchmark [46], [47], [48], [49],
which covers a wide range of instance-feature ratios, number
of classes, discreteness and data source domains as shown in
Table II.

For non-Rényi methods, continuous features are discretized
into 5 bins by the equal-width strategy used in [50]. We set
the number of random vectors s = 100 in ARMI. The Support
Vector Machine (SVM) algorithm with RBF kernel (σ = 1) is
adopted as the classifier using 10-fold cross-validation. In our

observation, classification accuracy tends to stabilize after
selecting the top k = 10 features (shown in the Appendix),
so we report the best accuracy achieved by each method for
selecting at most 10 features in Table III. The comparison
of running time between RMI and ARMI is also reported in
Table II. As we can see, both RMI and ARMI outperform other
Shannon’s entropy-based methods. Moreover, ARMI achieves
5 to 20 times speedup, 11.11 times on average compared to the
original RMI. For all datasets except “Beans”, ARMI obtains
exactly the same feature ranking orders as RMI.

3) Application to Feature Selection: We further explore the
possibility of improving feature ranking methods by consid-
ering the interactions between different features, i.e. directly
maximizing the final target I(Ssub; Y ) by matrix-based
entropy functional. Before the definition of the matrix-based
RMI in 4, a direct estimation of this quantity was thought
to be extremely hard or even intractable due to the curse of
high dimensionality [51]. Thus, enormous efforts have been
made on approximation techniques that retain only the first or
second-order interactions, including Mutual Information-based
Feature Selection (MIFS) [52], First-Order Utility (FOU) [53],
Mutual Information Maximization (MIM) [54], Maximum-
Relevance Minimum-Redundancy (MRMR) [55], Joint Mutual
Information (JMI) [56] and Conditional Mutual Information
Maximization (CMIM) [57] that achieve the state-of-the-art
performance.

We use the same datasets, discretization criterion and
classifier settings. We follow a greedy optimization strategy
(i.e., incrementally build the selected feature set, in each
step) and select the first 10 features that maximize the target
Iα(Ssub; Y ). The results are shown in Table III and II. ARMI
achieves 10 to 40 times speedup, 19.07 on average over
the original RMI. For “Optdigits”, “Spambase” and “Galaxy”
datasets, RMI and ARMI select exactly the same features.
Also, it is worth noting that in the Galaxy dataset, there
is one feature named “redshift” that achieves higher than
95% classification accuracy solely in identifying the class
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of a given star. In both selection and ranking experiments,
RMI and ARMI successfully identified this feature in the first
place, but other methods failed to find it out initially until
the third feature is selected. This verifies the effectiveness of
ARMI in both low and high-dimensional circumstances and
demonstrates its great potential in a variety of information-
theory-related tasks.

VI. CONCLUSION

In this paper, we develop computationally efficient approxi-
mations for matrix-based Rényi’s entropy, which achieve sub-
stantially lower complexity compared to the trivial eigenvalue
approach. Through further adoption of Taylor and Chebyshev
expansions, we support arbitrary values of α. Statistical guar-
antees are established for all proposed algorithms and their
optimality is proven by theoretical analysis. Large-scale sim-
ulations and real-world experiments are conducted to support
our theoretical results. It is shown that our approximation
algorithms bring tremendous speedup for a wide range of
information-related tasks, while only introducing negligible
loss in accuracy.

APPENDIX
PROOF OF MAIN RESULTS

For simplicity, we ignore some trivial cases in the following
analysis, including 1) κ = 1, i.e. all eigenvalues of A equal
1/n; 2) v = 1, i.e. except for the largest eigenvalue λ0 = 1,
all other eigenvalues of A equal 0.

A. Properties of the Trace of A

Consider a special case that the eigenspectrum of A
takes extreme value, the information potential tr(Aα) can be
expressed in terms of u and v:

tr(Aα) ∈

{
[µ, n1−α], for α < 1

[n1−α, µ], for α > 1
,

where µ =
1− un

v − u
· vα +

vn− 1
v − u

· uα. (7)

µ is the special case of tr(Aα) when all eigenvalues of A
belongs to {u, v}. Some properties about µ are worthy to
address for our following analysis.

Proposition 15: Let µ be defined as in (7), then

|log µ| = Ω(|α− 1|), |log µ| = O(|α− 1| log n). (8)

Proof: If u = 0, the conclusion is obvious since we have
µ = vα−1 and v ∈ (1/n, 1).

Otherwise, let κ = v/u be the condition number of A, then

µ = uα κα − καun + κun− 1
κu− u

= uα−1

(
κ(κα−1 − 1)(1− un)

κ− 1
+ 1
)

.

Ignoring the trivial case κ = 1, for any constant number
γ ∈ (0,∞) that satisfies κ > γ + 1, we have:

κα−1 − 1 ≤ κ(κα−1 − 1)
κ− 1

≤
(

1 +
1
γ

)
(κα−1 − 1).

Thus, we have shown that for all κ ∈ (1,∞):

|log µ| = Theta
(∣∣(α− 1) log u

+ log
(
(κα−1 − 1)(1− un) + 1

)∣∣).
When u ∈ (1/2n, 1/n), 1− un = O(1) and

|log µ| = Ω(|(α− 1) log u|)
= Ω(|(α− 1) log n|),

|log µ| = O(|(α− 1)(log u + log k)|)
= O(|(α− 1) log v|).

Otherwise when u <= 1/2n, |log µ| = Θ(|(α − 1) log v|).
Combining with v ∈ (1/n, 1), we finally get:

|log µ| = Ω(|α− 1|), |log µ| = O(|α− 1| log n).

□

B. Proof of Proposition 3

Proof: Let Z be the output of the algorithm A on
approximating trA, then with probability at least 1− δ,

−ϵ0 · tr(Aα) ≤ Z − tr(Aα) ≤ ϵ0 · tr(Aα).

When α < 1, 1 < µ ≤ tr(Aα) by (7), i.e.

1− ϵ0 = µ−ϵ ≥ tr−ϵ(Aα),

1 + ϵ0 <
1

1− ϵ0
= µϵ ≤ trϵ(Aα),

it follows that

(tr−ϵ(Aα)− 1)tr(Aα) ≤ Z − tr(Aα)
≤ (trϵ(Aα)− 1)tr(Aα)

tr1−ϵ(Aα) ≤ Z ≤ tr1+ϵ(Aα)

tr−ϵ(Aα) ≤ Z

tr(Aα)
≤ trϵ(Aα).

Taking log on both sides, we have:∣∣∣∣log
Z

tr(Aα)

∣∣∣∣ ≤ ϵ|log tr(Aα)|

1
1− α

|log Z − log tr(Aα)| ≤ ϵ

1− α
|log tr(Aα)|∣∣∣S̃α(A)− Sα(A)

∣∣∣ ≤ ϵ · Sα(A),

where S̃α(A) = 1
1−α log Z is the estimate of Sα(A). Similarly,

we can draw the same conclusion for α > 1.
On the other hand, let Z̄ be the output of the algorithm A

on approximating Sα(A), then with probability at least 1− δ∣∣Z̄ − Sα(A)
∣∣ ≤ ϵ · Sα(A).

When α < 1, with the same steps as above we can get:

(tr−ϵ(Aα)− 1)tr(Aα) ≤ t̃r(Aα)− tr(Aα)
≤ (trϵ(Aα)− 1)tr(Aα),

where t̃r(Aα) = exp((1 − α)Z̄) is the estimate of tr(Aα).
By (7) we have n1−α ≥ tr(Aα), then

trϵ(Aα) ≤ nϵ(1−α) = 1 + ϵ0,

tr−ϵ(Aα) ≥ n−ϵ(1−α) =
1

1 + ϵ0
≥ 1− ϵ0.
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Combining the inequalities above yields:

−ϵ0 · tr(Aα) ≤ t̃r(Aα)− tr(Aα) ≤ ϵ0 · tr(Aα).

We can get the same result for α > 1. This finishes the proof.
□

C. Proof of Theorem 4

Lemma 16 Theorem 1 in [15]: If Algorithm 1 is imple-
mented with s = O

(
1
ϵ

√
log
(

1
δ

)
+ log

(
1
δ

))
matrix-vector

multiplication queries, then for any positive semi-definite
matrix f(A), with probability at least 1 − δ, the output Z
satisfies: ∣∣Z − tr

(
f(A)

)∣∣ ≤ ϵ · tr
(
f(A)

)
.

Proof: Combining Proposition 3 and Lemma 16,
algorithm 2 returns an estimate S̃α(A) using

s = O

(
1
ϵ0

√
log
(

1
δ

)
+ log

(
1
δ

))
queries so that with confidence at least 1− δ∣∣∣S̃α(A)− Sα(A)

∣∣∣ ≤ ϵ · Sα(A),

where ϵ0 = 1 − min(µ, 1/µ)ϵ. We can get the convergence
rate of s by further applying Proposition 15:

s = O

(
1

ϵ|α− 1|

√
log
(

1
δ

)
+ log

(
1
δ

))
.

For integer α ≥ 2, |α− 1| = Θ(1). □

D. Proof of Theorem 4

Proof: Let B = A/v − In, pm(A) = vα
∑m

k=0

(
α
k

)
Bk

and Z be the estimate of tr(pm(A)) using Hutch++
algorithm.

|tr(pm(A))− tr(Aα)|

= vα

∣∣∣∣∣
∞∑

k=m+1

(
α

k

)
tr(Bk)

∣∣∣∣∣
≤ vαC

∣∣∣∣∣
∞∑

k=0

(
α

k

)
tr(Bm+1Bk)

∣∣∣∣∣ (9)

≤ C

∣∣∣∣(u

v
− 1
)m+1

∣∣∣∣tr(Aα), (10)

where C = maxk∈[0,∞]

∣∣∣( α
⌈α⌉+k+1

)
/
(
α
k

)∣∣∣.
(9) follows by noticing that:∣∣∣∣( α

m + k + 1

)/(
α

k

)∣∣∣∣ =
∣∣∣∣∣
m+k∏
i=k

α− i

i + 1

∣∣∣∣∣ ≤
∣∣∣∣∣∣
⌈α⌉+k∏

i=k

α− i

i + 1

∣∣∣∣∣∣
=
∣∣∣∣( α

⌈α⌉+ k + 1

)/(
α

k

)∣∣∣∣ ,
lim

k→∞

∣∣∣∣∣∣
⌈α⌉+k∏

i=k

α− i

i + 1

∣∣∣∣∣∣ = 1.

Thus C is a constant that depends only on α. (10) follows by
the von Neumann’s trace inequality, that for any two positive
semi-definite matrices A and B, tr(AB) ≤

∑
i λi(A)λi(B),

where λi(A) denotes the i-th singular value of A (the same for
λi(B)). By noticing that

(
α
k

)
tr(Bk), k ∈ [m,∞] are either all

positive semi-definite or all negative semi-definite by assuming
m > α, we have:

|tr(Bm+1Bk)| ≤ |u/v − 1|m+1
∑

i

λk
i (B)

= |u/v − 1|m+1|tr(Bk)|.

Let ϵ0 = 1 − min(µ, 1/µ)ϵ and ϵ1 = ϵ0
3 . by taking m =

O
(
κ log

(
1
ϵ0

))
, we have

C
∣∣∣u
v
− 1
∣∣∣m+1

<
ϵ0
2

, (11)

|tr(pm(A))− tr(Aα)| ≤ ϵ0
2

tr(Aα),

tr(pm(A)) ≤ ϵ0
2

tr(Aα) + tr(Aα) ≤ 3
2
tr(Aα).

Additionally, noticing that

min
λ∈[u,v]

pm(λ) ≥ min
λ∈[u,v]

(λα − |pm(λ)− λα|)

≥ min
λ∈[u,v]

(
λα − C

∣∣∣∣(u

v
− 1
)m+1

∣∣∣∣λα

)
(12)

≥ min
λ∈[u,v]

((
1− ϵ0

2

)
λα
)

> 0. (13)

(12) follows by taking A as a 1 × 1 matrix with entry λ
in (10). (13) follows by applying (11). Therefore, pm(A) is
positive semi-definite when m is large enough. By taking
s = O

(
1
ϵ1

√
log
(

1
δ

)
+ log

(
1
δ

))
in Lemma 16 we have:

|Z − tr(pm(A))| ≤ ϵ0
3

tr(pm(A)).

Combining the above results:

|Z − tr(Aα)| ≤ |Z − tr(pm(A))|
+ |tr(pm(A))− tr(Aα)|

≤ ϵ0
3

tr(pm(A)) +
ϵ0
2

tr(Aα)

≤ ϵ0
2

tr(Aα) +
ϵ0
2

tr(Aα)

= ϵ0 · tr(Aα).

According to Proposition 3 and 15, we finally have:

s = O

(
1

ϵ|α− 1|

√
log
(

1
δ

)
+ log

(
1
δ

))
,

m = O

(
κ log

(
1

ϵ|α− 1|

))
.

□

E. Proof of Theorem 6

Lemma 17 Theorem 2 in [58]: Let Γ(x) be the gamma
function and let R(x, y) = Γ(x + y)/Γ(x), then

R(x, y) ≥ x(x + y)y−1 for 0 ≤ y ≤ 1,

R(x, y) ≥ xy for 1 ≤ y ≤ 2,

R(x, y) ≥ x(x + 1)y−1 for y ≥ 2.
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Lemma 18 Theorem 5 in [15]: If Algorithm 1 is imple-
mented with s = O

(
1
ϵ

√
log
(

1
δ

)
+ log

(
1
δ

))
matrix-vector

multiplication queries, then for any matrix f(A), with proba-
bility at least 1− δ, the output Z satisfies:∣∣Z − tr

(
f(A)

)∣∣ ≤ ϵ · ∥f(A)∥∗,

where ∥·∥∗ is the nuclear norm.
Proof: Let pm(λ) = vα

∑m
k=0

(
α
k

)
(λ/v − 1)k and Z

be the estimate of tr(pm(A)) using Hutch++ algorithm.
Denote E(λ) as the polynomial approximation error at point
λ: E(λ) = |pm(λ) − λα|. By noticing that

(
α
k

)
(λ/v − 1)k,

k ∈ [m,∞] are either all positive or all negative for λ ∈ [0, v]
by assuming m > α, we have:

E(λ) = vα

∣∣∣∣∣
∞∑

k=m+1

(
α

k

)(
λ

v
− 1
)k
∣∣∣∣∣

≤ vα

∣∣∣∣∣
∞∑

k=m+1

(
α

k

)
(−1)k

∣∣∣∣∣ = E(0).

From the property of binomial terms, we have that for any
α > 0 and integer k > 1,

(
α

k−1

)
+
(
α
k

)
=
(
α+1

k

)
. Then(

1 +
λ

v
− 1
) ∞∑

k=m

(
α

k

)(
λ

v
− 1
)k

=
∞∑

k=m

(
α

k

)(
λ

v
− 1
)k

+
∞∑

k=m+1

(
α

k − 1

)(
λ

v
− 1
)k

=
(

α

m

)(
λ

v
− 1
)m

+
∞∑

k=m+1

(
α + 1

k

)(
λ

v
− 1
)k

.

Setting λ = 0 in the equation above, we have:(
α

m

)
(−1)m +

∞∑
k=m+1

(
α + 1

k

)
(−1)k = 0.

Therefore:

E(0) = vα

∣∣∣∣∣
∞∑

k=m+1

(
α

k

)
(−1)k

∣∣∣∣∣ = vα

∣∣∣∣−(α− 1
m

)
(−1)m

∣∣∣∣
= vα

∣∣∣∣(α− 1
m

)∣∣∣∣ = vα

∣∣∣∣ Γ(α)
Γ(m + 1)Γ(α−m)

∣∣∣∣
≤ vα

∣∣∣∣ Γ(α)
Γ(m− α + 1)Γ(α−m)

∣∣∣∣

·



1
(m− α + 1)(m + 1)α−1

0 < α < 1

1
(m− α + 1)α

1 < α < 2

1
(m− α + 1)(m− α + 2)α−1

α ≥ 2

(14)

≤ vαΓ(α)
π

· 2
(m− α + 1)α

. (15)

(14) follows by applying Lemma 17 on R(m − α + 1, α).
(15) follows by Euler’s reflection formula that for any frac-
tional number z, Γ(z)Γ(1− z) = π/ sin πz. And by assuming
that m ≥ 1, (m + 1)1−α ≤ 2(m− α + 1)1−α when α < 1.

Let ϵ0 = 1 − min(µ, 1/µ)ϵ and ϵ1 = ϵ0
3 . By choosing

m as:

2vαΓ(α)
π(m− α + 1)α

≤ ϵ0
2n

· tr(Aα),

m ≥ α− 1 + α

√
4nvαΓ(α)

ϵ0π min(vα−1, n1−α)
.

Let λ1, · · · , λn be the eigenvalues of A, then

|tr(pm(A))− tr(Aα)| ≤
n∑

i=1

E(λi) ≤ nE(0)

≤ 2nvαΓ(α)
π(m− α + 1)α

≤ ϵ0
2
· tr(Aα).

Taking s = O
(

1
ϵ1

√
log
(

1
δ

)
+ log

(
1
δ

))
in Lemma 18 we have:

|Z − tr(pm(A))| ≤ ϵ0
3
∥pm(A)∥∗ =

ϵ0
3

n∑
i=1

|pm(λi)|

≤ ϵ0
3

(
n∑

i=1

λα
i +

n∑
i=1

|pm(λi)− λα
i |

)

=
ϵ0
3

(
tr(Aα) +

n∑
i=1

E(λi)

)
≤ ϵ0

3

(
tr(Aα) +

ϵ0
2

tr(Aα)
)

≤ ϵ0
2
· tr(Aα).

Combining the results we get so far:

|Z − tr(Aα)| ≤ |Z − tr(pm(A))|
+ |tr(pm(A))− tr(Aα)|

≤ ϵ0
2

tr(Aα) +
ϵ0
2

tr(Aα)

= ϵ0 · tr(Aα).

Applying Proposition 3 and 15, we finally have:

s = O

(
1

ϵ|α− 1|

√
log
(

1
δ

)
+ log

(
1
δ

))
,

m =


O

(
α
√

vn α

√
1

ϵ|α− 1|

)
α < 1

O

(
vn α

√
1

ϵ|α− 1|

)
α > 1

.

□

F. Proof of Theorem 8

The following lemma gives the upper bound of Chebyshev
series approximation.

Lemma 19 Theorem 2.1 in [59]: Suppose f is analytic
with |f(z)| ≤ M in the region bounded by the ellipse with foci
±1 and major and minor semi-axis lengths summing to K > 1.
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Let pm denote the Chebyshev polynomial approximation of f
with degree m, then for any m ∈ Z+:

max
λ∈[−1,1]

|f(λ)− pm(λ)| ≤ 4M

(K − 1)Km
.

By selecting an appropriate analytic region, we are able to
establish the error bound of approximating f(λ) = λα.

Proposition 20: Let g be the linear mapping [−1, 1] →
[u, v], f(λ) = λα be the target function, pm(λ) be the
Chebyshev series of degree m = O

(√
v
u log

(
v
uϵ

))
for function

f ◦ g, then the following inequality holds:

max
x∈[−1,1]

|(f ◦ g)(x)− pm(x)|

= max
λ∈[u,v]

|f(λ)− qm(λ)| ≤ ϵuα,

where qm = pm ◦ g−1.
Proof: It is easy to show that the power function f(z) =

zα is analytic in C/{−∞, 0}. Combining with linear mapping
g, the function f ◦ g is analytic in the region C/{−∞,−1−
2u

v−u}. Therefore we choose the ellipse region Ec with major
semi-axis length 1 + 2u

v−u = 1 + β, minor semi-axis length√
(β + 1)2 − 1 =

√
β2 + 2β and foci at ±1.

We then apply Lemma 19 with K = 1+β+
√

β2 + 2β and
M = (1 + β)α. By noticing that log K = Θ

(√
β
)
, we get the

upper bound of m:

m ≥
log
(

4M
(K−1)ϵuα

)
log K

= O

(√
v

u
log
( v

uϵ

))
.

□
Proof: By taking m = O

(√
v
u log

(
v

uϵ1

))
in

Proposition 20, where ϵ1 = ϵ0/2 and ϵ0 = 1−min(µ, 1/µ)ϵ,
we have:

max
λ∈[u,v]

|f(λ)− qm(λ)| ≤ ϵ1u
α,

|tr(qm(A))− tr(Aα)| ≤
n∑

i=1

|f(λi)− qm(λi)|

≤ nϵ1u
α ≤ ϵ0

2
· tr(Aα).

Additionally, noticing that

min
λ∈[u,v]

qm(λ) ≥ min
λ∈[u,v]

λα − max
λ∈[u,v]

|λα − qm(λ)|

≥ uα − ϵ0
2

uα ≥ 0.

Therefore, qm(A) is positive semi-definite when m is
large enough. By taking s = O

(
1
ϵ2

√
log
(

1
δ

)
+ log

(
1
δ

))
in

Lemma 16 where ϵ2 = ϵ0
3 we have:

|Z − tr(qm(A))| ≤ ϵ0
3

tr(qm(A)),

tr(qm(A)) ≤ ϵ0
2

tr(Aα) + tr(Aα) ≤ 3
2
tr(Aα),

where Z is the estimate of tr(qm(A)) using Hutch++ algo-
rithm. Combining the results we get so far:

|Z − tr(Aα)| ≤ |Z − tr(qm(A))|
+ |tr(qm(A))− tr(Aα)|

≤ ϵ0
3

tr(qm(A)) +
ϵ0
2

tr(Aα)

≤ ϵ0
2

tr(Aα) +
ϵ0
2

tr(Aα)

≤ ϵ0 · tr(Aα).

Applying Proposition 3 and 15, we finally have:

s = O

(
1

ϵ|α− 1|

√
log
(

1
δ

)
+ log

(
1
δ

))
,

m = O

(√
κ log

(
κ

ϵ|α− 1|

))
.

□

G. Proof of Theorem 10

Proof: When u = 0, the coefficients of Chebyshev series
T̂k have analytical expressions:

ck =
2
π

∫ π

0

(qm)α(cosθ) cos(kθ) dθ

=
2
π

∫ π

0

(v

2
(cos θ + 1)

)α

cos(kθ) dθ

=
2vαΓ(α + 1

2 )(α)k√
πΓ(α + 1)(α + k)k

.

where (α)k is the falling factorial: (α)k = α · (α − 1) · . . . ·
(α− k + 1). Then for each eigenvalue λ of A:

|λα − qm(λ)| =

∣∣∣∣∣
∞∑

i=m+1

ciT̂i(λ)

∣∣∣∣∣
≤

∞∑
i=m+1

|ci| =
∞∑

i=m+1

∣∣∣∣ 2vαΓ(α + 1
2 )(α)i√

πΓ(α + 1)(α + i)i

∣∣∣∣ (16)

=
2vα

√
π

∞∑
i=m+1

∣∣∣∣ Γ(α + 1
2 )Γ(α + 1)

Γ(α + i + 1)Γ(α−i + 1)

∣∣∣∣
≤ 2vα

√
π

∞∑
i=m+1

∣∣∣∣ Γ(α + 1
2 )Γ(α + 1)

Γ(i− α)Γ(α− i + 1)(i− α)2α+1

∣∣∣∣ (17)

≤
2vαΓ(α + 1

2 )Γ(α + 1)
π3/2

∞∑
i=m+1

∣∣∣∣ 1
(i− α)2α+1

∣∣∣∣ (18)

≤
2vαΓ(α + 1

2 )Γ(α + 1)
π3/2

∫ ∞

m

1
(x− α)2α+1

dx (19)

=
2vαΓ(α + 1

2 )Γ(α + 1)
π3/2

1
2α(m− α)2α

=
vαΓ(α + 1

2 )Γ(α)
π3/2(m− α)2α

.

(16) follows by noticing that T̂n(x) ∈ [−1, 1] for any
x ∈ [0, v]. (17) follows by applying Lemma 17 on
R(i − α, 2α + 1) similar to (14). (18) follows by Euler’s
reflection formula similar to (15). (19) follows by assuming

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on June 20,2023 at 02:23:25 UTC from IEEE Xplore.  Restrictions apply. 



4230 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 7, JULY 2023

m > α and noticing that n−k ≤
∫ n

n−1
x−k dx for n > 1 and

k > 1.
Let ϵ0 = 1 − min(µ, 1/µ)ϵ and ϵ1 = ϵ0

3 . By choosing
m as:

nvαΓ(α + 1
2 )Γ(α)

π3/2(m− α)2α
≤ ϵ0

2
· tr(Aα),

m ≥ α + 2α

√
2nvαΓ(α + 1

2 )Γ(α)
ϵ0π3/2 min(vα−1, n1−α)

.

Let λ1, · · · , λn be the eigenvalues of A, then

|tr(qm(A))− tr(Aα)| ≤ ϵ0
2
· tr(Aα),

Taking s = O
(

1
ϵ1

√
log
(

1
δ

)
+ log

(
1
δ

))
in Lemma 18 we have:

|Z − tr(qm(A))| ≤ ϵ0
3
∥qm(A)∥∗ =

ϵ0
3

n∑
i=1

|qm(λi)|

≤ ϵ0
3

(
n∑

i=1

λα
i +

n∑
i=1

|λα
i − qm(λi)|

)
≤ ϵ0

3

(
tr(Aα) +

ϵ0
2

tr(Aα)
)

≤ ϵ0
2
· tr(Aα).

Combining the results we get so far:

|Z − tr(Aα)| ≤ |Z − tr(pm(A))|
+ |tr(pm(A))− tr(Aα)|

≤ ϵ0
2

tr(Aα) +
ϵ0
2

tr(Aα)

= ϵ0 · tr(Aα).

Applying Proposition 3 and 15, we finally have:

s = O

(
1

ϵ|α− 1|

√
log
(

1
δ

)
+ log

(
1
δ

))
,

m =


O

(
2α
√

vn 2α

√
1

ϵ|α− 1|

)
α < 1

O

(
√

vn 2α

√
1

ϵ|α− 1|

)
α > 1

.

□

H. Proof of Theorem 11
Lemma 21: Theorem III-B in [15] Any algorithm that

accesses a positive semi-definite matrix A via matrix-vector
multiplication queries Ar1, · · · , Arm, where r1, · · · , rm are
possibly adaptively chosen vectors with integer entries in
[−2b, · · · , 2b], requires s = Ω

(
1

ϵ(b+log(1/ϵ))

)
such queries

to output an estimate Z so that, with probability > 2
3 ,

(1− ϵ) tr(A) ≤ Z ≤ (1 + ϵ) tr(A).
Proof: Combining Lemma 21 and Proposition 3, we have

that the lower bound of estimating Sα(A) to relative error 1±ϵ
with probability at least 2

3 is

s = Ω
(

1
ϵ0(b + log(1/ϵ0))

)
,

where ϵ0 = nϵ|α−1| − 1 ≤ ϵ|1− α| log n.

In limited precision computation settings, b is some constant
value, then we finally get

s = Ω

 1

ϵ|α− 1| log n log
(

1
ϵ|α−1| log n

)
.

□

I. Proof of Theorem 13

The following lemma gives the convergence rate of function
f(x) = (γ−x)−t in best uniform approximation. It is proved
in [25] pp.38-39 and [26] pp.102-103.

Lemma 22: Let ∥·∥ denote the L∞ norm of functions and
Em(f) = minp∈Pm

∥f − p∥ be the error of best uniform
approximation of a given function f(x) on the finite interval
[−1, 1]. Then when m →∞,

Em

(
(γ − x)−t

)
∼ mt−1

|Γ(t)|

(
γ −

√
γ2 − 1

)m

(√
γ2 − 1

)1+t ,

where t, γ ∈ R and γ > 1.
Proposition 23: There exists a positive decreasing function

ϵ0 : R+ → R+ such that for arbitrary 0 < u < v < 1 and
ϵ ∈ (0, ϵ0(v/u)), any polynomial qm(λ) that approximates
function f(λ) = λα, requires m = Ω

(√
v
u log

(
u
vϵ

))
degree

to achieve |
∑n

i=1(f(λi)− qm(λi))| ≤ ϵ, for arbitrary real
numbers λ1, · · · , λn ∈ [u, v] that satisfy

∑n
i=1 λi ∈ [b, b+ v),

where b ≥ v is a constant number.
Proof: Under the same assumptions, We list the fol-

lowing problems for polynomial approximation. We claim
that each of them could be reduced to the next problem in
sequence.

Problem 24: The minimum degree m required for any
polynomial qm to achieve |

∑n
i=1(f(λi)− qm(λi))| ≤

ϵ for any λ1, · · · , λn ∈ [u, v] that satisfy
∑n

i=1

λi ∈ [b, b + v).
Problem 25: The minimum degree m required for any

polynomial qm to achieve
∑n

i=1|f(λi)− qm(λi)| ≤ ϵ for any
λ1, · · · , λn ∈ [u, v] that satisfy

∑n
i=1 λi = b.

Problem 26: The minimum degree m required for any
polynomial qm to achieve |f(λ)− qm(λ)|ϕ(λ) ≤ ϵ for any
λ ∈ [u, v], where ϕ(λ) = ⌊min(nv−b

λ−u , b−nu
v−λ )⌋.

Problem 27: The minimum degree m required for any
polynomial qm to achieve |f(λ)− qm(λ)| ≤ ϵ for any
λ ∈ [u, v].

Problem 28: The minimum degree m required for any
polynomial qm to achieve |f(λ)− qm(λ)| ≤ ϵ for any
λ ∈ [u, u + 2].

For Problem 28, approximating (f ◦ g)(x) = (x + u + 1)α

is equivalent to approximating (γ − x)−t with γ = u + 1
and t = −α, since they are symmetric about y-axis. Let
ϵ = Em(f ◦ g), with the following property of the gamma
function

|Γ(−α)| = π

|sin πα|Γ(α + 1)
,
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by applying Lemma 22, when m is large enough, we have:

lim
m→∞

(
1 + u−

√
u2 + 2u

)m
mα+1

=
ϵ|Γ(−α)|(√
u2 + 2u

)α−1

= Θ
(

ϵ

(
√

u)α−1|sinπα|

)
.

Thus, for each u ∈ (0, 1), there is an ϵ0 ∈ (0, 1), such that
when ϵ < ϵ0:

m = Ω
(

1√
u

log
(

u|sin πα|
ϵ

))
.

When α /∈ N, we have |sin πα| = Θ(1).
Problem 27 → 28: Noticing that an approxima-

tion of f[u,u+2](λ) could be acquired by approximating(
u+2

v

)α
f[ uv

u+2 ,v]

(
v

u+2λ
)

, The lower bound of m for approxi-

mating f[ uv
u+2 ,v] is then

m = Ω
(

1√
u

log
( u

vϵ

))
.

This is equivalent to approximating f[u,v] with

m = Ω
(√

v

u
log
( u

vϵ

))
.

Problem 26 → 27: We assume u < b−v
n−1 and v > b−u

n−1
without loss of generality, otherwise it means mini λi > u or
maxi λi < v, and the interval [u, v] could be make tighter to
fit this assumption. Then for any λ ∈ [u, v],

ϕ(λ) =
⌊
min

(
nv − b

v − λ
,
b− nu

λ− u

)⌋
≥
⌊
min

(
nv − b

v − u
,
b− nu

v − u

)⌋
≥ 1.

Problem 25 → 26: For any λ ∈ [u, v], we construct a series
of numbers λ1, · · · , λn by setting λ1, · · · , λnλ

= λ and
λnλ+1, · · · , λn = b−λnλ

n−nλ
, where nλ = ⌊min(nv−b

λ−u , b−nu
v−λ )⌋.

Then the series satisfies
∑n

i=1 λi = b and
n∑

i=1

|f(λi)− qm(λi)| ≤ ϵ,

nλ|f(λ)− qm(λ)| ≤ ϵ,

ϕ(λ)|f(λ)− qm(λ)| ≤ ϵ.

Problem 24 → 25: Let qm be the solution for Problem 24
that achieves ϵ/2 approximation error. In the trivial case,
we have f(λ) ≤ qm(λ) for all λ ∈ [u, v] (or f(λ) ≥ qm(λ)),
then

∑n
i=1|f(λi)− qm(λi)| = |

∑n
i=1(f(λi)− qm(λi))|.

Otherwise there exists some ρ ∈ (u, v) that satisfies f(ρ) =
qm(ρ), since both f(λ) and qm(λ) are continuous functions.
Given arbitrary query λ1, · · · , λn, there exists a partition nρ

of the reordered numbers λi so that for all i ∈ [1, nρ], f(λi) ≤
qm(λi) and for all i ∈ [nρ + 1, n], f(λi) > qm(λi).

nρ∑
i=1

|f(λi)− qm(λi)| =

∣∣∣∣∣
nρ∑
i=1

(f(λi)− qm(λi))

∣∣∣∣∣,
n∑

i=nρ+1

|f(λi)− qm(λi)| =

∣∣∣∣∣∣
n∑

i=nρ+1

(f(λi)− qm(λi))

∣∣∣∣∣∣.

Fig. 6. Running time of different s and m combinations.

Construct two queries: λ1
1, · · · , λ1

n1
and λ2

1, · · · , λ2
n2

:

λ1
i =

{
λi i ≤ nρ

ρ i > nρ

, n1 = nρ +


n∑

i=nρ+1

λi/ρ

.

λ2
i =

{
λi+nρ

i ≤ n− nρ

ρ i > n− nρ

, n2 = n− nρ +

⌈
nρ∑
i=1

λi/ρ

⌉
.

Let b =
∑n

i=1 λi, then
∑n1

i=1 λ1
i ∈ [b, b + v) and

∑n2
i=1 λ2

i ∈
[b, b + v). Therefore

n∑
i=1

|f(λi)− qm(λi)|

=
nρ∑
i=1

|f(λi)− qm(λi)|+
n∑

i=nρ+1

|f(λi)− qm(λi)|

=

∣∣∣∣∣
nρ∑
i=1

(f(λi)− qm(λi))

∣∣∣∣∣+
∣∣∣∣∣∣

n∑
i=nρ+1

(f(λi)− qm(λi))

∣∣∣∣∣∣
=

∣∣∣∣∣
n1∑
i=1

(f(λ1
i )− qm(λ1

i ))

∣∣∣∣∣+
∣∣∣∣∣

n2∑
i=1

(f(λ2
i )− qm(λ2

i ))

∣∣∣∣∣
≤ ϵ

2
+

ϵ

2
= ϵ.

From the reductions above, the lower bound of m for
solving Problem 24 is m = Ω

(√
v
u log

(
u
vϵ

))
. □

Proof: Let Z = tr(qm(A)) be the trace of the approxi-
mated matrix functional, then

|Z − tr(Aα)| =

∣∣∣∣∣
n∑

i=1

(qm(λi)− λα
i )

∣∣∣∣∣.
Let ϵ0 = nϵ|α−1|−1, then by applying Proposition 23, we have
that m = Ω

(√
v
u log

(
u

vϵ0

))
is the lower bound to achieve

|Z − tr(Aα)| ≤ ϵ0 with b = 1. Combining with Proposition
3, the lower bound for matrix function approximation is

m = Ω
(√

v

u
log
(

u

vϵ0

))
= Ω

(√
v

u
log
(

u

vϵ|α− 1| log n

))
.

□
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Fig. 7. Number of features (k) versus classification error (%) curves for different feature selection methods.

Fig. 8. Number of features (k) versus classification error (%) curves for different feature ranking methods.

J. Proof of Theorem 14

Similarly, the following lemma gives the convergence rate
of function f(x) = |x|α in the best uniform approximation.
It is proved in [27] and [28].

Lemma 29: Let ∥·∥ denote the L∞ norm of functions and
Em(f) = minp∈Pm

∥f − p∥ be the error of best uniform
approximation of a given function f(x) on the finite interval
[−1, 1]. Then when m →∞,

Em(xα) ∼ δ(α)m−2α,

where α ∈ R+, δ(α) is a non-negative constant num-
ber depending only on α, and satisfies δ(α) > 0 when
α /∈ N.

Proposition 30: For arbitrary v > 0 and small enough ϵ,
any polynomial qm(λ) that approximates f(λ) = λα requires
m = Ω

(
2α

√
1
ϵ

)
degree to achieve |

∑n
i=1(f(λi)− qm(λi))| ≤

ϵ for arbitrary real numbers λ1, · · · , λn ∈ [0, v] that sat-
isfy

∑n
i=1 λi ∈ [b, b + v), where b ≥ v is a constant

number.

Proof: We can prove Proposition 30 through a similar
procedure as the proof of 23. □

Proof: Let Z = tr(qm(A)) be the trace of the
approximated matrix functional and ϵ0 = nϵ|α−1| − 1. From
Proposition 30 we know that m = Ω

(
2α

√
1
ϵ0

)
is the lower

bound to achieve |Z − tr(Aα)| ≤ ϵ0 with b = 1. Then by
applying Proposition 3, we get the lower bound

m = Ω
(

2α

√
1
ϵ0

)
= Ω

(
2α

√
1

ϵ|α− 1| log n

)
.

Let Z = tr(qm(A)) be the trace of the approximated matrix
functional, then

|Z − tr(Aα)| =

∣∣∣∣∣
n∑

i=1

(qm(λi)− λα
i )

∣∣∣∣∣.
Let ϵ0 = nϵ|α−1|−1, then by applying Proposition 23, we have

that m = Ω
(√

v
u log

(
u

vϵ0

))
is the lower bound to achieve

|Z − tr(Aα)| ≤ ϵ0 with b = 1. Combining with Proposition 3,
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the lower bound for matrix function approximation is

m = Ω
(√

v

u
log
(

u

vϵ0

))
= Ω

(√
v

u
log
(

u

vϵ|α− 1| log n

))
.

□

SUPPLEMENTARY EXPERIMENTAL RESULTS

A. Running Time of Fractional Approximations

An intuitive showcase of running time with different s and
m combinations is shown in Figures 6, in which we can
observe the linear increase in time complexity with s or m.
For comparison, the trivial eigenvalue approach takes
27 seconds for a 5000× 5000 matrix.

B. Accuracy Curves of Feature Selection

The classification accuracy achieved by each feature selec-
tion and feature ranking method after each incrementally
selected feature is reported in Figure 7 and 8 respectively.
It is easy to see that classification error stops decreasing after
the first 10 most informative features are selected.
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