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Abstract

Motivation: Artificially making clinical decisions for patients with multi-morbidity has long been considered a thorny
problem due to the complexity of the disease. Drug recommendations can assist doctors in automatically providing
effective and safe drug combinations conducive to treatment and reducing adverse reactions. However, the existing
drug recommendation works ignored two critical information. (i) Different types of medical information and their
interrelationships in the patient’s visit history can be used to construct a comprehensive patient representation.
(ii) Patients with similar disease characteristics and their corresponding medication information can be used as a
reference for predicting drug combinations.

Results: To address these limitations, we propose DAPSNet, which encodes multi-type medical codes into patient
representations through code- and visit-level attention mechanisms, while integrating drug information correspond-
ing to similar patient states to improve the performance of drug recommendation. Specifically, our DAPSNet is
enlightened by the decision-making process of human doctors. Given a patient, DAPSNet first learns the importance
of patient history records between diagnosis, procedure and drug in different visits, then retrieves the drug informa-
tion corresponding to similar patient disease states for assisting drug combination prediction. Moreover, in the train-
ing stage, we introduce a novel information constraint loss function based on the information bottleneck principle to
constrain the learned representation and enhance the robustness of DAPSNet. We evaluate the proposed DAPSNet
on the public MIMIC-III dataset, our model achieves relative improvements of 1.33%, 1.20% and 2.03% in Jaccard, F1
and PR-AUC scores, respectively, compared to state-of-the-art methods.

Availability and implementation: The source code is available at the github repository: https://github.com/andy
lun96/DAPSNet.

Contact: cli@xjtu.edu.cn

1 Introduction

In recent years, the widespread usage of patient Electronic Health
Records (EHRs) has promoted the development of intelligent health-
care, which provides clinical decision support for doctors and
improves the quality and efficiency of disease diagnosis and treat-
ment recommendations (Li et al., 2020; Ma et al., 2017, 2020a, b;
Nguyen et al., 2021; Zhang et al., 2020). Drug recommendation, as
an important task, can provide effective and safe prescriptions for
doctors’ reference (Cheng et al., 2019; Choi et al., 2016a; Li et al.,
2017). Existing work learns patient representations (PRs) by captur-
ing temporal patterns of patient medical information in EHRs to ac-
curately predict drug combinations. Such process can be carried out
in two ways: (i) Instance-based drug recommendation (Gong et al.,
2021; Zhang et al., 2017) that only uses the patient’s current diag-
nosis and procedure records for drug recommendation while

ignoring the longitudinal patient history information. Therefore, the
instance-based methods cannot capture the patient’s historical dis-
ease process. In order to overcome this issue, (ii) longitudinal-based
drug recommendation (Choi et al., 2016b; Shang et al., 2019; Wang
et al., 2021; Wu et al., 2022b; Yang et al., 2021a, b) that models
longitudinal patient history in the temporal dimension and combines
learned PRs with drug representations to predict drug combinations.

However, considering the complexity of patients’ clinical treat-
ment, the existing methods still suffer from two major challenges. (i)

Inadequate PR. Most existing works (Choi et al., 2016b; Shang
et al., 2019; Yang et al., 2021b) only regard the diagnosis and pro-
cedure information in the patient’s historical visits as two independ-
ent views, these methods encode the medical information separately
and concatenate them together to obtain the PR (Hochreiter and
Schmidhuber, 1997). However, on the one hand, the obtained PR is
not comprehensive, as it neither takes into account the impact of
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historical prescriptions on the patient’s disease state nor the relation-
ship between medical perspectives on different dimensions of the
disease trajectories. On the other hand, most deep learning methods
are equipped with multi-layer neural networks to model the long-
term visit dependence of patients. But more layers will lead to the in-
crease of mutual information between the obtained PR and the input
patient information, as well as the oblivion of critical information
reflecting the patient’s disease state. (ii) Inaccurate patient similarity.
The existing works (Suo et al., 2017; Zhang et al., 2014) exploit
similarities between patients’ global representations to provide rec-
ommendations. However, patients with similar disease courses are
the basis of personalized prediction, considering that in clinical prac-
tice the course of patients is often long and complex (Allam et al.,
2020). Therefore, compared with calculating the similarity of pa-
tient status, the similarity of patient global representation may lose
or underutilize the correlation between patient disease processes to
accurately match drugs and disease status.

To overcome the above challenges, we propose a deep learning
model Dual Attention and Patient Similarity Network (DAPSNet)
that fully utilizes the longitudinal information into PRs while inte-
grating patient similarity to improve the performance of drug rec-
ommendation. Specifically, our DAPSNet consists of: (i) a PR
module that utilizes code- and visit-level attention mechanisms to
encode comprehensive PRs by integrating diagnosis, procedure and
drug information from patients’ historical visits and current visit. (ii)
A patient retrieval module, which constructs a patient representa-
tion memory (PM) to store the disease state representations and cor-
responding drug combinations of different patients, and further
retrieves corresponding drug information based on the similarity of
the patient’s current state with its own historical state and other
patients’ historical states. (iii) A drug recommendation module that
learns patient–drug matching by concatenating the PRs and the cap-
tured disease state similarity based drug information, then predict-
ing the drug combinations via a sigmoid layer.

In the training stage, the DAPSNet is optimized by multiple loss
functions. To reduce the information loss when learning PRs and en-
hance the robustness of the model, we introduce an information
constrained (IC) loss function based on the information bottleneck
(IB) principle (Tishby and Zaslavsky, 2015). The IC loss function
aims to maximize the mutual information between PRs and labels,
while minimizing the mutual information between PRs and the input
patient information. Moreover, we adopt the multi-label prediction
(MP) loss and drug–drug interaction (DDI) loss for guiding the
model in making accurate and safe predictions. Experiments on the
public MIMIC-III dataset demonstrate the effectiveness and safety
of our model.

Our main contributions are summarized as follows:

• We propose DAPSNet, a novel drug recommendation model that

predicts accurate and safe drug recommendation by leveraging

various medical information in a patients’ history visits as well as

the similarity of patients’ disease states.
• We design a novel PR module that obtains a comprehensive PR

by combining the patient’s visit information encoded by code-

and visit-level attention mechanisms.
• We introduce an information constraint loss to constrain the

learned representation and further enhance the robustness of our

model.
• We design a novel patient retrieval module that contains a PM

that including all patients’ states representations and correspond-

ing drug combinations. Furthermore, we retrieve corresponding

drug information based on the patient state similarity to improve

the performance of drug recommendation.
• We conduct extensive experiments on the MIMIC-III database

with several state-of-the-art methods, our model outperforms the

best baselines with 1.33%, 1.20%, 2.03% and 0.59% in Jaccard

similarity, F1-score, Precision Recall Area Under Curve (PR-

AUC) and Receiver Operating Characteristic Area Under Curve

(ROC-AUC), respectively. The experimental results demon-

strated that our proposed DAPSNet is effective, safe and robust.

2 Related work

According to the PR learning strategies, existing drug recommenda-
tion methods can be divided into rule-based, instance-based and
longitudinal-based drug recommendation.

1. Rule-based drug recommendation. Rule-based drug recommen-

dation (Almirall et al., 2012; Chen et al., 2016) relies on the

medical guidelines summarized by clinicians, which requires a

lot of medical resources and efforts. For example, Chen et al.

(2016) designs the knowledge patterns system to recommend

treatment with the patient’s medical information. However,

these methods are highly limited and lack of generalization.

2. Instance-based drug recommendation. Instance-based drug rec-

ommendation (Gong et al., 2021; Zhang et al., 2017) only learns

the PR from the current visit. For example, Zhang et al. (2017)

encode the patient’s current visit with the attention mechanism

and proposed a multi-instance multi-label learning framework.

Gong et al. (2021) leverage multiple data sources to learn the

embeddings of the patient–disease–medicine relations by the

knowledge graph for drug recommendation. However, these

methods ignore the longitudinal patient historical information.

3. Longitudinal-based drug recommendation. Longitudinal-based

drug recommendation (Choi et al., 2016b; Shang et al., 2019;

Wu et al., 2022a, b; Yang et al., 2021a, b) leverages the tem-

poral dependencies of the longitudinal patient history and cap-

tures the sequential dependency between visits to learn the PRs.

Most work uses RNN-like methods to model the longitudinal

patient information. For example, Shang et al. (2019) adopt the

memory-based networks with RNNs to model the longitudinal

treatment trajectories and integrate the DDIs. Yang et al.

(2021b) use a graph-based encoder to model the molecule infor-

mation and improve the drug representation learning. Yang

et al. (2021a) and Wu et al. (2022b) transform the drug recom-

mendation task into the problem of drug change prediction.

MICRON (Yang et al., 2021a) is proposed to model the health

condition changes by a recurrent residual learning approach,

and COGNet (Wu et al., 2022b) uses the copy-or-predict mech-

anism to model the relationship between drug changes in

patients’ continuous visits.

However, few works have focused on constructing patient dis-
ease state representations that can reflect the temporal complexity
of disease processes. Furthermore, due to the limitations of the
model, it is difficult for existing methods to capture the patients’
long range visit dependency. This article utilizes dual view attention
mechanisms to encode comprehensive PRs while integrating patient
similarity to improve the performance of drug recommendation.

3 Materials and methods

In this section, we first define the notation and formulate the drug
recommendation problem. Thereafter, we introduce the proposed
DAPSNet.

3.1 Preliminaries and problem formulation
3.1.1 Preliminaries

Preliminaries The longitudinal EHRs contain a variety of sequential
medical codes of patients, e.g. diagnosis, procedures and drugs.
Each patient can be represented as a series of clinical treatment
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events, taking patient i as an example, Xi ¼ ½xi
ð1Þ;xi

ð2Þ; . . . ;xi
ðTiÞ�,

where i 2 f1;2; � � �;Ng; N is the number of all patients in the data-
set, and Ti denotes the total number of visits for patient i. We utilize

a tuple ½dðtÞi ;p
ðtÞ
i ;m

ðtÞ
i � to represent the clinical visit x

ðtÞ
i of the patient

i, where di
ðtÞ 2 f0;1gjDj; pi

ðtÞ 2 f0; 1gjPj and mi
ðtÞ 2 f0;1gjMj are

multi-hot diagnoses, procedure and drug vectors, respectively, while
D;P;M are the diagnosis, procedure and drug sets, respectively.
Meanwhile, the disease state from xi

ð1Þ to xi
ðtÞ of patient i is denoted

as Xi
1:t.

EHR&DDI Graphs We use GE ¼ fM; EEg and GD ¼ fM; EDg to de-

note the EHR graph and DDI graph, respectively, where M is the
drug set, EE and ED are the edge set of the prescription in EHRs and

known DDIs from external knowledge, respectively. We use the ad-
jacency matrix AE;AD 2 R

jMj�jMj to store the edge information in
EE and ED. AE½i; j� ¼ 1 means that the ith drug and the jth drug ap-

pear in the prescription in the same visit, AD½i; j� ¼ 1 represents the
adverse reaction between the ith drug and the jth drug.

3.1.2 Problem formulation

In our drug recommendation task, we aim at predicting the drug

combination set m̂ðtÞ 2 f0;1gjMj for different patient at visit t.
Assuming that at the visit time t of patient i, given the patient disease
state Xi

1:t�1, the current diagnoses and procedures code ½dðtÞi ;p
ðtÞ
i �,

EHR graph GE and DDI graph GD. Our model aims to minimize
the gap between the current prediction m̂i

ðtÞ and the real prescrip-

tion mi
ðtÞ 2 f0;1gjMj.

The main notations used in this article are listed in Table 1.

3.2 DAPSNet
As illustrated in Figure 1, our DAPSNet consists of the following

three components: (i) the PR Module that learns the patient disease
state representation from the medical codes in the longitudinal his-

tory data; (ii) the Patient Retrieval Module that utilizes the patient
similarity to generate additional PRs. (iii) the drug recommendation

Module that predicts the drug combinations based on the concaten-

ated patients’ representations. Each component of the DAPSNet is
detailed below in turn.
(i) PR Module

In the longitudinal EHRs, each medical code plays an important

role in PR. The diagnosis, procedure and drug information reflect
the patient’s health status, treatment process and historical prescrip-
tion, respectively. In order to make full use of these medical infor-

mation, we design a patient encoder, which includes the designed
embedding tables of different medical codes. We first embed the dis-

ease state from xi
ð1Þ to xi

ðt�1Þ of patient i, Xi
1:t�1 ¼

½dð1Þi ; p
ð1Þ
i ;m

ð1Þ
i �; . . . ; ½dðt�1Þ

i ; p
ðt�1Þ
i ;m

ðt�1Þ
i � and the current medical

code ½dðtÞi ;p
ðtÞ
i � into the embedding space:

d
ðjÞ
ei ¼ d

ðjÞ
i Ed ; j 2 f1;2; . . . ; tg

p
ðjÞ
ei ¼ p

ðjÞ
i Ep; j 2 f1;2; . . . ; tg

m
ðjÞ
ei ¼ m

ðjÞ
i E�m; j 2 f1;2; . . . ; t � 1g;

(1)

where j 2 f1; 2; . . . ; tg indicates the index of visit while the medical
code are diagnosis and procedure information, j 2 f1;2; . . . ; t � 1g
when the medical code is drug information. Ed 2 R

jDj�dim;Ep 2
R
jPj�dim;E�m 2 R

jMj�dim are the embedding tables of diagnosis, pro-
cedure and drug, respectively (E�m will be explained in the next sec-
tion), and d

ðjÞ
ei ;p

ðjÞ
ei ;m

ðjÞ
ei are embedding vectors of the diagnoses,

procedures and drug of patient i at visit j, respectively. Thus, the
disease process of patient i Xi

1:t�1 can be represented as
ei

1:t�1 ¼ ½dð1Þei ;p
ð1Þ
ei ;m

ð1Þ
ei �; . . . ; ½dðt�1Þ

ei ;p
ðt�1Þ
ei ;m

ðt�1Þ
ei �, the current med-

ical code can be represented as the embedded vector ei
t ¼ ½dðtÞei ; p

ðtÞ
ei �.

Drug Graph encoder
There are two kinds of graph structure information in the EHR

data and external knowledge. The EHR graph contains the informa-
tion that some drugs are prescribed at the same time to improve the
curative effect, and the DDI graph contains the information that
some drugs have adverse reactions and cannot be used at the same
time. Inspired by the GAMENet (Shang et al., 2019) using the
Graph Convolutional Network (GCN) (Kipf and Welling, 2016) to
encode the drug representation. In order to recommend effective and
safe drug combinations, we encode the EHR graph GE and DDI
graph GD to obtain the drug representation.

Given the input drug embedding table Em 2 R
jMj�dim and the

drug adjacency matrix A� 2 R
jMj�jMj, we use the GCN layer to ob-

tain the drug representations as follows:

GCNðEm;A�Þ ¼ rðD̂�
1
2Â�D̂

�1
2EmWÞ; (2)

where D̂ is a diagonal matrix of Â� (e.g. D̂ii ¼ RjA� ij), Â� ¼
A� þ I; I is the identity matrix.

Then, we use a two-layer GCN to model the improved embed-
dings on each graph. We model the co-occurrence relations and
DDIs based on the EHRs and DDIs adjacency matrix AE and AD

separately.

Ge ¼ GCNðtanhðGCNðEm;AEÞÞWe;AEÞ; (3)

Gd ¼ GCNðtanhðGCNðEm;ADÞÞWd;ADÞ; (4)

where We and Wd are the hidden learnable parameter matrices and
Ge and Gd are the generated drug relation representations.

Finally, we fuze two generated relation representations Ge, Gd

together to obtain the final drug representation E�m,

E�m ¼ Ge þ dGd; (5)

where d is the learnable parameter to fuze different relation graphs.
Attention mechanisms

Inspired by the AMANet (He et al., 2020), which learns the
intra-view interaction and inter-view interaction for dual asynchron-
ous sequential learning through the self- and inter-attention mecha-
nisms, respectively. In the EHRs data, we treat the diagnosis,
procedure and drug in the disease process as three sequential views.
Based on the above embedding process, in order to select the relative
important visits in the disease process and the critical medical code
in each visit, we design two different attention mechanisms, namely,
the code-level attention and visit-level attention, which give different
weights to different medical codes and different visit records in the
patient disease process.

Firstly, in order to select the critical medical code in each visit
(e.g. ei

ðjÞ ¼ ½dðjÞei ; p
ðjÞ
ei ;m

ðjÞ
ei �), we design the code-level attention mech-

anism to obtain the weight corresponding to different codes in each
visit að1Þi ; að2Þi ; . . . ; aðt�1Þ

i , which can be measured by:

g
ðjÞ
i ¼ RNNCðgðj�1Þ

i ; ej
iÞ; (6)

Table 1. Notations used in DAPSNet

Notation Description

xi
ðtÞ The clinical visit of the patient i at visit t

d
ðtÞ
i ; p

ðtÞ
i ;m

ðtÞ
i The diagnosis, procedure and drug code

D;P;M The diagnosis, procedure and drug set

Xi
1:t The disease state process of patient i

E� 2 R
j�j�dim The medical embeddings

ai
ðtÞ The code-level attention

bi
ðtÞ The visit-level attention

GE;GD The EHR and DDI graph

qi
ðtÞ The patient representation

simC The current similarity

simPer
H The personal historical similarity

simPat
H The patient historical similarity

CðtÞi The similarity representation

HPer
ðtÞ
i The personal similarity representation

HPat
ðtÞ
i The patient similarity representation

m̂i
ðtÞ The drug predictions of the patient i at visit t

mi
ðtÞ The prescription of the patient i at visit t
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aðjÞi ¼ tanhðWgg
ðjÞ
i þ bgÞ; (7)

where Wg and bg are the learnable parameters.
Moreover, in order to select the relative important visits in the

patient disease process ei
1:t�1, we design the visit-level attention to

obtain weights corresponding to each visit bð1Þi ;bð2Þi ; . . . ;bðt�1Þ
i ,

which can be measured by:

h
ðjÞ
i ¼ RNNV

�
h
ðj�1Þ
i ; ej

i

�
; (8)

bðjÞi ¼
Whh

ðjÞ
i

Pt�1

j¼1

Whh
ðjÞ
i

; (9)

where Wh is the learnable parameter.
Therefore, we can select the critical medical code elements in

each visit and the relatively important visit in the patient disease
process to jointly obtain the final PR q

ðtÞ
i by combining the above

two attention mechanisms with the patient’s disease process and the
current medical code. The calculation process is as follows:

q
ðtÞ
i ¼ et

i þ
Xt�1

j¼1

bðjÞi �
�
aðjÞi � ej

i

�
; (10)

where q
ðtÞ
i is the representation of the patient i with t times visit, the

embedded vector ei
t ¼ ½dðtÞei ; p

ðtÞ
ei � is the current medical code and � is

the element-wise multiplication.
The PR module of our model is composed of embedded layers of

different medical codes and two different attention mechanisms.
Compared with the previous work, DAPSNet can learn a more com-
prehensive patient disease state representation in the longitudinal
patient EHRs data, which is helpful for the subsequent patient re-
trieval module to measure the similarity accurately.
(ii) Patient Retrieval Module

We record each visit of N patients in the EHRs as
fX1

1:T1 ; . . . ;XN
1:TNg. Our patient retrieval module first con-

structs a PM to store the disease state representations and the

corresponding drug combinations of different patients, and further
calculates the similarity information between the PRs from PM to
retrieve the corresponding drug information. The retrieval process
can be separated into the following three steps.

First, we build a PM to store the patient disease state representa-
tions fqðkÞj g

j¼N;k¼Tj

j¼1;k¼1 learned from the PR module and the correspond-
ing drug combinations fmðkÞj g

j¼N;k¼Tj

j¼1;k¼1 in each visit.

a. Current Similarity: Next, we calculate the similarity between the

patient’s current representation q
ðtÞ
i and the drug representation

E�m, which we record as the Current Similarity simC. Using the

current similarity, we can directly retrieve the Current Similarity

drug information CðtÞi ,

CðtÞi ¼ E�m � simCðq
ðtÞ
i ;E

�
mÞ; (11)

simCðqðtÞi ;E
�
mÞ ¼ SoftmaxðE�mq

ðtÞ
i Þ; (12)

where the Current Similarity simCð�; �Þ calculates the similarity ma-

trix between the PR q
ðtÞ
i and the drug representation E�m, then, we

use Softmax function to normalize the weight matrix.

b. Historical Similarity: Due to the temporal complexity of patient

disease processes, take patient i as example, the disease state rep-

resentation at visit t of the target patient i: q
ðtÞ
i may have high

similarity to (i) his/her own historical visits fqðkÞi g
k¼t�1
k¼1 and (ii)

the historical visits of other patients fqðkÞj g
j¼Nðj 6¼iÞ;k¼Tj

j¼1;k¼1 .

Therefore, we first calculate the similarity between the represen-
tation of the patient’s current visit q

ðtÞ
i and the representations of

each visit in his/her own history fqðkÞi g
k¼t�1
k¼1 . We record as the

Personal Historical Similarity simPer
H . We can retrieve the Personal

Similarity drug informationHPer
ðtÞ
i with the following steps,

si
ðt;kÞ ¼ simPer

H ðq
ðtÞ
i ; q

ðkÞ
i Þ ¼

q
ðtÞ
i � q

ðkÞ
i

jqðtÞi j � jq
ðkÞ
i j

; (13)

Fig. 1. The architecture of DAPSNet. Our DAPSNet consists of a PR module, a patient retrieval module and a drug recommendation module. The PR module includes two at-

tention mechanisms to encode the patient EHRs and yield the PRs by integrating the patient visits information. The patient retrieval module first constructs the PM and further

utilizes the patient similarity to obtain additional drug information. The drug recommendation module outputs the final drug combinations
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HPer
ðtÞ
i ¼ E�m � simPer

H ðsi
ðt;kÞ; fmðkÞi g

k¼t�1
k¼1 Þ; (14)

where si
ðt;kÞ denotes the similarity between the representation qi

ðtÞ

and fqðkÞi g
k¼t�1
k¼1 , then, we use the sequence similarity si

ðt;kÞ as atten-
tion weights to generate history drugs distribution by weighted sum
of the corresponding drugs fmðkÞi g

k¼t�1
k¼1 . Finally, with further retriev-

ing information from E�m using simPer
H , we can get the Personal

Similarity drug informationHPer
ðtÞ
i .

Similar to measure the similarity with the patient’s own historic-
al visits, we calculate the similarity between the target patient’s rep-
resentation q

ðtÞ
i and the representation of different patients at each

visit, we record as the Patient Historical Similarity simPat
H . We can

retrieve the Patient Similarity drug information HPat
ðtÞ
i with the fol-

lowing steps,

si;j
ðt;kÞ ¼ simPat

H ðq
ðtÞ
i ;q

ðkÞ
j Þ ¼

q
ðtÞ
i � q

ðkÞ
j

jqðtÞi j � jq
ðkÞ
j j

; (15)

HPat
ðtÞ
i ¼ E�m � simPat

H ðsi;j
ðt;kÞ; fmðkÞj g

j¼N;k¼Tj

j¼1;k¼1 Þ; (16)

where si;j
ðt;kÞ denotes the similarity between the representation qi

ðtÞ

and fqðkÞj g
j¼Nðj 6¼iÞ;k¼Tj

j¼1;k¼1 , similar with the calculation process of

Personal Historical Similarity, we can get the Patient Similarity drug

information HPat
ðtÞ
i . Meanwhile, to avoid excessive computational

complexity, we only consider the top n sequences.
Finally, we concatenate two drug information with different sim-

ilarities ½HPer
ðtÞ
i ;HPat

ðtÞ
i � to get our Historical Similarity representa-

tionHðtÞi .
(iii) Drug recommendation Module

After retrieving the Current Similarity representation CðtÞi , the
Historical Similarity representation HðtÞi and the patient current rep-
resentation q

ðtÞ
i , we need to find the drug combinations that are

most relevant to the patient’s current disease state. Following previ-
ous work (Shang et al., 2019), we use a patient–drugs matching
function, the MP o

ðtÞ
i can be obtained as:

o
ðtÞ
i ¼ sigmoidðconcat½qðtÞi ; C

ðtÞ
i ;H

ðtÞ
i �Þ; (17)

where o
ðtÞ
i 2 R

jMj denotes the final matching scores for the patient i.
By comparing the matching scores o

ðtÞ
i to a pre-defined threshold

parameter w, we can obtain the final drug combinations m̂i
ðtÞ 2 R

jMj

predicted by our model.
(iv) Loss Function

Our DAPSNet is trained with three loss functions: (i) a DDI
Loss for explicitly constraining the DDI rate in the drug combina-
tions prediction, (ii) a MP Loss for accurately predicting the drug
combinations and (iii) an Information Constraint Loss to enhance
the robustness of the model with utilizing the IB principle. We simul-
taneously optimize the learnable parameters during the training
process.

i. DDI Loss: For the drug combinations, we want to achieve a

lower DDI rate, which will reduce adverse reactions and realize

the prediction of safe drug recommendation. Based on the DDI

adjacency matrix AD, we design the DDI loss for a single visit

o
ðtÞ
i as:

LDDI ¼
XjMj

i¼1

XjMj

j¼1

ADi;j � oðtÞi � o
ðtÞ
j : (18)

During the training, the model will conduct back propagation

according to the average DDI loss of all visits.

ii. MP Loss: We consider the drug recommendation as a multi-

label binary classification task, and use two common multi-

label loss functions. The first one is Multi-Label Margin (MLM)

loss (Ji and Ye, 2009), which is popular in existing drug recom-

mendation works, such as GAMENet (Shang et al., 2019),

SafeDrug (Yang et al., 2021b) and COGNet (Wu et al., 2022b).

The MLM loss ensures the predicted probability of ground

truth labels has at least 1 margin larger than others, which can

be mathematically described as:

Lmulti ¼
X

i;j:m
ðtÞ
i
¼1;m

ðtÞ
j
¼0

maxð0; 1� ðôðtÞi � ô
ðtÞ
j ÞÞ

jMj : (19)

The second one is the Binary Cross-Entropy (BCE) loss, which can

be formulated as:

Lbce ¼ �
XjMj

i¼1

½mi
ðtÞ logðôi

ðtÞÞ þ ð1�mi
ðtÞÞ logð1� ôi

ðtÞÞ�: (20)

The MP loss is formulated by combining the MLM loss and BCE

loss with a balance hyper-parameter l:

Lmp ¼ ð1� lÞLmulti þ lLbce: (21)

iii. Information Constraint Loss:

In order to obtain a compact and comprehensive PR, we extend the

IB principle to the drug recommendation task. Specifically, in this

work, we encourage to minimize the mutual information between

the latent PRs q and the input medical codes X while maximizing

the mutual information between the latent representations q and the

drug labels m,

minIðX; qÞ � uIðq; mÞ: (22)

According to the variational approximation of the IB (Alemi et al.,

2016), we can get the lower bound of Iðq; mÞ, thus, the latter term

of the objective function Equation (21) is equal to the BCE loss men-

tioned above.

According to the definition of the mutual information,

IðX; qÞ ¼ HðqÞ �HðqjXÞ, during the training, the model will get a

definite latent PR q with given medical codes input X, so the condi-

tional entropy of q given X: HðqjXÞ ¼ 0, Therefore, minimizing the

mutual information IðX; qÞ can be estimated to minimize the en-

tropy of q, H(q). The latent PRs q consists multiple visits qt, given a

real valued positive definite kernel j and the Gram matrix K, where

Ki;j ¼ jðqi; qjÞ, where qi and qj are the representations of the i-th

and j-th samples in a batch, respectively. We use a matrix-based ana-

logue to Re’nyi’s a-entropy to approximate calculate H(q) (Yu et al.,

2021),

HðqÞ ¼ HaðAÞ ¼
1

1� a
log2ðtrðAaÞÞ

¼ 1

1� a
log2

�Xn

i¼1

kiðAÞa
�
;

(23)

where a 2 ð0;1Þ \ ð1;þ1Þ; A is the normalized version of K; A ¼
K

trðKÞ ; kiðAÞ denotes the i-th eigenvalue of A. To simplify the formu-

lation of IB, we define the last item of Equation (23) as the informa-

tion constraint loss LIC.

iv. Overall Loss Function: During the training process, the overall

loss function L is obtained by combining the three loss func-

tions through the weighted sum to optimize the drug recom-

mendation network,

L ¼ k1LDDI þ k2Lmp þ k3LIC; (24)

where k1, k2 and k3 are the weights for different loss functions.
(v) Algorithm

Our training algorithm is detailed in Algorithm 1.
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4 Experiments setup

4.1 Dataset
We evaluate the effectiveness and safety of the proposed DAPSNet
and baselines on the public MIMIC-III database (Johnson et al.,
2016). Our dataset is processed according to the protocol proposed
by PhysioNet (Goldberger et al., 2000). Following the data-
preprocessing in the previous work (Shang et al., 2019; Yang et al.,
2021b), we choose the drugs within the first 24h and only keep the
patients with more than one visit in our dataset. The diagnosis and
procedure data are coded by the ninth version of International
Classification of Diseases (http://www.icd9data.com/). We extract
DDI information of the top-40 most common types from TWOSIDES
(Tatonetti et al., 2012), where the drugs are presented by ATC third
level codes (https://www.whocc.no/atc/structure_and_principles/). In
order to integrate the DDI data and compute the DDI score, we trans-
form the NDC codes to the same ATC third level codes.

We stratified patients with different visit times in the dataset.
The statistics of the processed MIMIC-III dataset are summarized in
Table 2.

4.2 Baselines
We evaluate our model by comparing it with the following baselines
including Logistic Regression (LR),ECC, RETAIN (Choi et al.,
2016b), LEAP (Zhang et al., 2017), DMNC (Le et al., 2018),
GAMENet (Shang et al., 2019), SafeDrug (Yang et al., 2021b),
MICRON (Yang et al., 2021a) and COGNet (Wu et al., 2022b).

• LR is a standard logistic regularization.
• ECC uses multiple SVM classifiers to make MP;
• RETAIN (Choi et al., 2016b) uses a two-level RNN neural atten-

tion model to improve the sequence prediction.
• LEAP (Zhang et al., 2017) is an instance-based method, which

treats drug recommendation as a sentence generation task.
• DMNC (Le et al., 2018) uses a memory augmented neural net-

work to recommend on a differentiable neural network.
• GAMENet (Shang et al., 2019) adopts memory augmented neur-

al networks and stores historical prescriptions for prediction.
• SafeDrug (Yang et al., 2021b) captures the molecule structure in-

formation with the global and local encoders.
• MICRON (Yang et al., 2021a) proposes an recurrent residual

learning model to predict the drug change.
• COGNet (Wu et al., 2022b) utilizes a copy-or-predict mechan-

ism to generate the drug combinations.

4.3 Evaluation metrics
We use DDI rate, Jaccard similarity score (Jaccard) (Niwattanakul
et al., 2013), Average F1 score (F1), PR-AUC (Davis and Goadrich,
2006) and ROC-AUC to measure the safety, accuracy and effective-
ness of prediction.

4.4 Implementation details
Following the previous drug recommendation work (Shang et al.,
2019; Wu et al., 2022b; Yang et al., 2021b), we divided the dataset
into training, validation and test set as 2

3 : 1
6 : 1

6. Our method is imple-
mented by PyTorch (https://pytorch.org) 1.6.0 based on python
3.7.5, tested on an Intel Xeon CPUs with two NVIDIA 2080Ti
GPUs. We choose the optimal hyper-parameters in our model based
on the validation set, the dimension size is set to 64 and the thresh-
old d is set to 0.5. The weight l, k1, k2 and k3 in our overall loss are
set to 0.05, 0.2, 0.75 and 0.05, respectively. We use a 2� 10�4

learning rate to train our model within 50 epochs. Our model is
optimized by the Adam optimizer (Kingma and Ba, 2014). All the
baselines are trained and implemented with the optimized parame-
ters from the references.

5 Results and discussion

5.1 Results
5.1.1 Performance comparison

Table 3 demonstrates the experiment results of the proposed
DAPSNet and baselines. We conduct 10 rounds of tests for all the
models and report their metric scores’ mean and standard deviation.
Overall, our proposed model DAPSNet outperforms all baselines in
terms of 1.33%, 1.20%, 2.03% and 0.59% improvement in Jaccard

Table 2. Statistics of the dataset

Item Number

# patients 6350

# clinical events 14 995

# diagnoses 1958

# procedures 1430

# drugs (ATC third) 132

Avg./max # of visits 2.37/29

Avg./max # of diagnoses per visit 10.51/128

Avg./max # of procedures per visit 3.84/50

Avg./max # of drugs per visit 11.18/64

# patients visited twice 4700

# patients visited three times 949

# patients visited four times 373

# patients visited five times 170

# patients visited more than five times 158

Algorithm 1 One training epoch of DAPSNet

Require: Training set fðdi;pi;miÞgNi¼1, EHRs and DDIs know-

ledge matrices AE;AD, hyper-parameters d, l, k1, k2 and k3

and the threshold w;

1: Initialize the parameters: Ed, Ep, Em, RNNc; RNNv, We

and Wd;

2: Generate the drug representation E�m according to

Equations (2)–(5);

3: for patient i :¼ 1 to N do

4: Read the patient i0s history ½dð1Þ; dð2Þ; . . . ; dðTÞ�;
½pð1Þ; pð2Þ; . . . ; pðTÞ�; ½mð1Þ;mð2Þ; . . . ;mðTÞ�;

5: for history visit t:¼ 1 to T do

6: Read the historical diagnoses, procedures and drugs of

the patient at the t-th visit ½dð1Þ; . . . ; dðtÞ�; ½pð1Þ; . . . ;pðtÞ�
and ½mð1Þ; . . . ;mðt�1Þ�;

7: Generate embeddings d
ðjÞ
ei ; p

ðjÞ
ei ðj � tÞ and m

ðjÞ
ei ; ðj �

t � 1Þ by Equation (2);

8: Generate attention vector ai
ðjÞ and bi

ðjÞ by Equations

(6)–(9);

9: Generate patient representation qi
ðtÞ by Equation (10);

10: Generate Current Similarity representation CðtÞi by

Equations (11) and (12);

11: Generate Historical Similarity representation HðtÞi by

Equations (13)–(16);

12: Generate mapping representation o
ðtÞ
i by Equation

(17);

13: Generate the output multi-hot drug vector m̂i
ðtÞ by

comparing the matching scores oi
ðtÞ with w.

14: end for

15: Generate and accumulate LDDI;Lmp;LIC in Equations

(18) and (23), respectively;

16: end for

17: Optimize the combined loss L in Equation (24);
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similarity, F1-score, PR-AUC and ROC-AUC, respectively.
Compared with the DL-models that utilize longitudinal patient in-
formation (e.g. RETAIN, DMNC, GAMENet, SafeDrug, MICRON
and COGNet), the instance-based models (e.g. LR, ECC and LEAP)
that only consider the current visit shows poor results in accuracy
prediction. At the same time, the DDI rate of the predicted drug
combinations is similar to the MIMIC-III dataset itself (average
DDI: 0.08379).

In detail, RETAIN and DMNC only encode the patient’s historical
information and do not introduce external knowledge into the mod-
els. In contrast, GAMENet improves the model’s performance by
encoding the drug embedding of the external graph structure and con-
structing the patient memory bank, but it provides a high DDI rate.
SafeDrug models the molecular graph in drug encoding and introdu-
ces the DDI controllable loss function, resulting in a further perform-
ance improvement and ensuring the lowest DDI rate among SOTA
methods. Following the parameter chosen in SafeDrug, we set the
DDI threshold in SafeDrug to 0.06. Different from the above models,
MICRON and COGNet noticed that there is a correlation between
drug combinations in two consecutive visits. MICRON uses the recur-
rent residual method to predict the unchanged drugs. Considering the
correlation between drugs, COGNet introduces a copy-or-predict
mechanism to determine whether historical prescriptions are still rele-
vant, which further improves the performance but maintains a high
DDI rate because of no DDI constraint. Compared with the above
SOTA model, our DAPSNet achieves higher prediction accuracy
under DDI constraints. Experimental results show that our model can
balance the accuracy and safety of prediction through the PR and pa-
tient retrieval module and further predict safer and more effective
drug combinations than the existing methods.

5.1.2 Historical information utilization

To further explore the ability of model DAPSNet to capture the med-
ical information in historical visits, we conduct experiments on the
performance of different models to investigate the impact of the num-
ber of visits in the dataset. According to the dataset statistics in
Table 2, in our dataset, the average number of visits for different
patients is 2.37. The proportion of patients with more than five visits
in the dataset does not exceed 10%. So, we stratify the datasets based
on different number of visits to study its impact on the performance
of different models. As a comparison, here, we choose the recent
SafeDrug, MICRON and COGNet as stronger baselines. The

comparison results of various methods on different number of visits
are in Figure 2. The horizontal axis represents the patients visit times

and the vertical axis represents the values of the different evaluation
metrics. The results show that DAPSNet almost achieves the best per-

formance with different visit times. With the increase in visits, the per-
formance of DAPSNet and COGNet has been further improved,
showing that both models effectively use patient historical informa-

tion. On the contrary, the performance of SafeDrug using RNN to
model the patient history decreased, but the overall performance

remains unchanged. The performance of MICRON shows a decreas-
ing trend under different visit times, because the drug change measure-
ment mechanism will lead to error accumulation and MICRON only

predicts the unchanged part. In conclusion, we can see that our
DAPSNet can stably recommend safe and effective drug combinations

with more visits while comparing with other models.

5.2 DAPSNet components analysis
5.2.1 Model ablation study

In this section, we verify the effectiveness of each module in
DAPSNet. Specifically, we design the ablation studies on our dataset

and test on the following variants:

• DAPSNet w=o D: we remove the diagnoses information in each

visit.
• DAPSNet w=o P: we remove the procedures information in each

visit.
• DAPSNet w=o M: we remove the medications information in

each visit.
• DAPSNet w=o a: we remove the code-level attention mechanism

in PR module.
• DAPSNet w=o b: we remove the visit-level attention mechanism

in PR module.
• DAPSNet w=o a; b: we remove both the code- and visit-level at-

tention mechanisms.
• DAPSNet w=o GDDI: we remove the DDI graph in encoding the

drug representation.
• DAPSNet w=o GEHR: we remove the EHR graph in encoding the

drug representation.

Table 3. Performance comparison on MIMIC-III

Model DDI Jaccard F1 PR-AUC ROC-AUC Avg. # of drugs

ECC 0.0849 6 0.0018 0.4996 6 0.0049 0.6569 6 0.0044 0.6844 6 0.0038 0.9281 6 0.0014 18.0722 6 0.1914

RETAIN 0.0835 6 0.0020 0.4887 6 0.0028 0.6481 6 0.0027 0.7556 6 0.0033 0.9257 6 0.0011 20.4051 6 0.2832

LEAP 0.0731 6 0.0008 0.4521 6 0.0024 0.6138 6 0.0026 0.6549 6 0.0033 0.9172 6 0.0014 18.7138 6 0.0666

DMNC 0.0842 6 0.0011 0.4864 6 0.0025 0.6529 6 0.0030 0.7580 6 0.0039 0.9226 6 0.0043 20.0000 6 0.0000

GAMENet 0.0864 6 0.0006 0.5067 6 0.0025 0.6626 6 0.0025 0.7631 6 0.0030 0.9288 6 0.0064 27.2145 6 0.1141

SafeDrug 0.0589 6 0.0005 0.5213 6 0.0030 0.6748 6 0.0027 0.7647 6 0.0025 0.9344 6 0.0009 19.9178 6 0.1604

MICRON 0.0641 6 0.0007 0.5100 6 0.0033 0.6654 6 0.0031 0.7687 6 0.0026 0.9337 6 0.0011 17.7267 6 0.2172

COGNet 0.0852 6 0.0005 0.5336 6 0.0011 0.6869 6 0.0010 0.7739 6 0.0009 0.9396 6 0.0004 28.0903 6 0.0950

DAPSNet 0.0657 6 0.0010 0.5469 6 0.0025 0.6989 6 0.0013 0.7942 6 0.0024 0.9465 6 0.0006 21.0715 6 0.2104

Note: The best results in each column are bolded.
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Fig. 2. The effect of number of visits for various models
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• DAPSNet w=o GDrug: we remove the EHR and DDI graphs in

encoding the drug representation.
• DAPSNet w=o HPat i: we remove the set of patient historical simi-

larity representations.
• DAPSNet w=o Hi: we remove the set of similarity representations.
• DAPSNet w=o LDDI: we remove the DDI loss function.
• DAPSNet w=o LIC: we remove the Information Constraint loss

function.

Table 4 shows the results for the different variants of DAPSNet.
By comparing the ablation results, DAPSNet w=o D, DAPSNet
w=o P and DAPSNet w=o M yield poor results among all ablation
models, which suggest that the medical information, diagnosis, pro-
cedure and medication information, play an important role in the
drug recommendation. DAPSNet w=o a, DAPSNet w=o b and
DAPSNet w=o a; b indicate that the code- and visit-level attention
mechanisms in PR learning module bring an improvement to the rec-
ommendation performance. DAPSNet w=o GDDI, DAPSNet
w=o GEHR and DAPSNet w=o GDrug illustrate that the DDI graph
and EHR graph in the drug graph encoding module can not only
learn a more comprehensive drug representation, but also improve
the performance of the model. Further, we compare the DAPSNet
w=o HPati and DAPSNet w=o Hi with our model, the result illus-
trates that the patient historical similarity and the personal historical
similarity improve the accuracy and completeness of the patient re-
trieval module, thereby improving model performance. The results
of DAPSNet w=o LIC indicate that IB principle constrains the learn-
ed PRs and has contributions to the final result. Compared to the
variant without DDI loss LDDI, we found that DAPSNet w=o LDDI

has better results in some indicators(e.g. Jaccard, F1, PR-AUC and
ROC-AUC), but the DDI rate is much higher than DAPSNet.
Without the constraint of DDI loss function, DAPSNet w=o LDDI

has a similar DDI rate with the MIMIC-III dataset itself and the
average number of recommended drugs has increased, which sug-

gests that our DAPSNet mimics the behavior of physicians and pro-
vides better performance in prescribing drug combinations. Overall,
comparing with all variants, DAPSNet achieves more balanced and
accurate result in drug recommendation.

5.2.2 Detailed components study

In order to better illustrate the effectiveness of our model and to in-
vestigate the performance of different models for learning PR and
measuring disease trajectories similarity. Specifically, we further de-
sign the ablation studies with the SOTA methods on our dataset and

test on the following variants:

• GAMENet w=o GDDI: GAMENet model without the DDI

knowledge in drug encoding.
• SafeDrug w=o Local: SafeDrug model without bipartite drug

encoder.
• COGNet w=o GDrug: COGNet model without the EHR and DDI

knowledge in drug encoding.
• DAPSNet w=o GDDI: DAPSNet model without the DDI know-

ledge in drug encoding.
• DAPSNet w=o GDrug: DAPSNet model without the EHR and

DDI knowledge in drug encoding.
• DAPSNetPatReprþ GAMENet: we replaced the PR module of

GAMENet with the PR module of DAPSNet.
• DAPSNetPatReprþ SafeDrug: we replaced the PR module of

SafeDrug with the PR module of DAPSNet.
• DAPSNetPatReprþ COGNet: we replaced the PR module of

COGNet with the PR module of DAPSNet.

Table 4. Ablation study for different components of DAPSNet on MIMIC-III

Model DDI Jaccard F1 PR-AUC ROC-AUC Avg. # of drugs

DAPSNet w=o D 0.0590 6 0.0007 0.5132 6 0.0028 0.6687 6 0.0025 0.7664 6 0.0031 0.9369 6 0.0016 18.9669 6 0.1606

DAPSNet w=o P 0.0614 6 0.0011 0.5235 6 0.0031 0.6794 6 0.0028 0.7792 6 0.0040 0.9422 6 0.0018 20.3780 6 0.1406

DAPSNet w=o M 0.0647 6 0.0014 0.5363 6 0.0019 0.6889 6 0.0017 0.7850 6 0.0033 0.9431 6 0.0009 19.9799 6 0.1670

DAPSNet w=o a 0.0674 6 0.0013 0.5386 6 0.0020 0.6894 6 0.0024 0.7840 6 0.0026 0.9434 6 0.0006 20.2564 6 0.1680

DAPSNet w=o b 0.0676 6 0.0013 0.5373 6 0.0026 0.6897 6 0.0028 0.7837 6 0.0027 0.9427 6 0.0008 20.3225 6 0.1950

DAPSNet w=o a; b 0.0667 6 0.0014 0.5204 6 0.0033 0.6772 6 0.0022 0.7712 6 0.0025 0.9392 6 0.0018 20.3252 6 0.2419

DAPSNet w=o GDDI 0.0684 6 0.0011 0.5435 6 0.0028 0.6962 6 0.0025 0.7932 6 0.0033 0.9436 6 0.0006 19.8746 6 0.1534

DAPSNet w=o GEHR 0.0624 6 0.0009 0.5425 6 0.0027 0.6956 6 0.0024 0.7936 6 0.0031 0.9434 6 0.006 22.4862 6 0.1684

DAPSNet w=o GDrug 0.0696 6 0.0012 0.5379 6 0.0035 0.6895 6 0.0019 0.7835 6 0.0027 0.9456 6 0.0019 20.3739 6 0.1757

DAPSNet w=o HPat i 0.0671 6 0.0010 0.5327 6 0.0022 0.6942 6 0.0014 0.7838 6 0.0030 0.9426 6 0.0012 20.1247 6 0.1799

DAPSNet w=o Hi 0.0657 6 0.0012 0.5274 6 0.0033 0.6896 6 0.0030 0.7781 6 0.0034 0.9375 6 0.0006 21.4862 6 0.1689

DAPSNet w=o LDDI 0.0853 6 0.0012 0.5485 6 0.0020 0.7003 6 0.0023 0.7981 6 0.0029 0.9475 6 0.0009 22.0041 6 0.1849

DAPSNet w=o LIC 0.0679 6 0.0013 0.5381 6 0.0042 0.6898 6 0.0039 0.7838 6 0.0051 0.9398 6 0.0009 20.3909 6 0.2001

DAPSNet 0.0657 6 0.0010 0.5469 6 0.0025 0.6989 6 0.0013 0.7942 6 0.0024 0.9465 6 0.0006 21.0715 6 0.2104

Table 5. Performance comparison on different variant

Model DDI Jaccard F1 PR-AUC ROC-AUC Avg. # of drugs

GAMENet w=o GDDI 0.0898 6 0.0008 0.4824 6 0.0025 0.6398 6 0.0017 0.7389 6 0.0030 0.9266 6 0.0015 28.3004 6 0.1141

SafeDrug w=o Local 0.0606 6 0.0007 0.4862 6 0.0016 0.6442 6 0.0016 0.7423 6 0.0013 0.9281 6 0.0007 19.0724 6 0.0971

COGNet w=o GDrug 0.0842 6 0.0004 0.5306 6 0.0013 0.6836 6 0.0012 0.7706 6 0.0013 0.9383 6 0.0006 29.1076 6 0.0795

DAPSNet w=o GDDI 0.0684 6 0.0011 0.5435 6 0.0028 0.6962 6 0.0025 0.7932 6 0.0033 0.9436 6 0.0006 19.8746 6 0.1534

DAPSNet w=o GDrug 0.0696 6 0.0012 0.5379 6 0.0035 0.6895 6 0.0019 0.7835 6 0.0027 0.9456 6 0.0019 20.3739 6 0.1757

DAPSNetPatReprþ GAMENet 0.0859 6 0.0007 0.5104 6 0.0033 0.6662 6 0.0029 0.7632 6 0.0032 0.9309 6 0.0083 25.2817 6 0.1604

DAPSNetPatReprþ SafeDrug 0.0572 6 0.0003 0.5143 6 0.0027 0.6748 6 0.0026 0.7700 6 0.0029 0.9347 6 0.0012 21.4926 6 0.1333

DAPSNetPatReprþ COGNet 0.0832 6 0.0005 0.5382 6 0.0024 0.6864 6 0.0022 0.7750 6 0.0031 0.9396 6 0.0004 29.5331 6 0.1248

RNNPatReprþ DAPSNet 0.0673 6 0.0011 0.5205 6 0.0033 0.6757 6 0.0030 0.7754 6 0.0025 0.9400 6 0.0008 19.5021 6 0.1698

TransformerPatReprþ DAPSNet 0.0682 6 0.0005 0.5261 6 0.0011 0.6785 6 0.0010 0.7738 6 0.0009 0.9405 6 0.0006 20.0323 6 0.1408
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• RNNPatReprþ DAPSNet: we replaced the PR module of DAPSNet

with the PR module that adopts RNN.
• TransformerPatReprþ DAPSNet: we replaced the PR module of

DAPSNet with the PR module that adopts Transformer block.
Table 5 shows the results for the different variants. We con-

ducted two sets of experiments. In the first set of experiments, we
aim to explore the impact of DDI graph and EHR graph on the
model performance in drug encoding. We construct different models
without DDI knowledge and compare their performance. Since
COGNet w=o GDrug removes both the EHR graph and the DDI
graph, we choose DAPSNet w=o GDrug for a fair comparison. Due
to the constraint of the DDI threshold (0.06), SafeDrug w=o Local
reaches the lowest DDI rate. From the comparison between the
results in the table and the results of the original model, it can be
seen that removing the DDI graph will have a negative impact on
the DDI rate and performance of the model. Meanwhile, DAPSNet
w=o GDDI and DAPSNet w=o GDrug can maintain lower DDI rate
and higher prediction accuracy compared to other variants, which
shows that the whole framework is indeed effective.

In the second set of experiments, we aim to investigate the differ-
ences between the PR learning modules of different models. We
adopt the PR module of the DAPSNet model in GAMENet,
SafeDrug and COGNet, respectively, and try the RNN-based PR
module, which adopt in GAMENet and SafeDrug and the
Transformer-based PR module, which adopt in COGNet into our
model, respectively. We further compare the above variants with the
original models. From the results, we can see that with adopting our
PR module, the variants of GAMENet, SafeDrug and COGNet have
significantly lower DDI rates and better accuracy compared to the
model themselves. Furthermore, we replace the PR module of
DAPSNet with the PR learning method of these SOTA models.
There are two existing methods: one is GAMENet and SafeDrug,
which use RNN to encode diagnosis and treatment information re-
spectively, and the other is COGNet, which use Transformer block
to encode the medical information separately. These two variants of
DAPSNet show poor result in both DDI rate and model perform-
ance compared with DAPSNet itself. The results of the second set of
experiments demonstrate that the PR learning module in our model
is comprehensive and effective.

5.3 Case study
We provide a case study to show our DAPSNet’s effectiveness. We
choose a patient with five visits from the test set and use GAMENet,
SafeDrug and COGNet to predict the drug combinations based on
their historical medical records. The detailed diagnosis IDs, the rec-
ommended drug ATC-third code (in MIMIC-III) and drug combin-
ation DDI rate of the selected patient in each visit are provided in
Table 6. In addition, we use Figure 3 for concise and intuitive dis-
play. We use ICD-9 codes to represent diagnosis records and the
ATC-third codes to represent recommended drugs. Here, the
‘missed’ in Figure 3 and Table 6 indicates the drugs in the ground
truth but are not predicted, while ‘unseen’ refers to the drugs pre-
dicted by the models but are not in the ground truth.

First, our model has the best recommendation results by compar-
ing the results of other models with respect to each visit, our model
predicts the highest number and accuracy of correct drugs, and the
least number of redundant drugs. Further, we calculated the DDI
score of each drug combinations. The results show that the DDI
score of our model and SafeDrug predicted drugs are lower than
GAMENet and COGNet due to the DDI loss function. While ensur-
ing DDI, our model has higher accuracy than SafeDrug, While
GAMENet and COGNet improve the accuracy, and the increasing
number of drugs leads to higher DDI rates. We analyze the DDIs be-
tween the unseen and correct drugs predicted by each model, and
interestingly, we find out that the unseen drugs predicted by
DAPSNet have fewer interactions with its correctly predicted drugs
than other models, providing a good constraint on the DDI rates.
Combined with the previous experimental results, this case study
further verifies that the drug combinations recommended by our
model make a trade-off between efficacy and safety.

6 Conclusion

In this work, we proposed DAPSNet, a novel drug recommendation
model that first integrates the historical prescription information
into encoding the PR and further retrieves the patients’ different dis-
ease state similarities to jointly enhance the drug recommendation
performance. Specifically, we learned the comprehensive PR from
the patient’s historical visit information through a novel PR module
that incorporates code- and visit-level attention mechanisms.
Furthermore, we retrieve the corresponding drug combinations
according to the similarity between the patients and their own and
other patients’ historical disease states to obtain additional drug in-
formation, which improved the prediction accuracy. We designed an
information constraint loss function based on the IB principle to
constrain the PR and obtain a more robust model. The experimental
results on the MIMIC-III dataset demonstrated that our DAPSNet is
superior to the SOTA methods in accurately predicting drug combi-
nations. Also, our model achieves a low DDI rate among the pre-
dicted drugs to ensure safe and effective recommendations.
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