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Markov Subsampling Based on Huber Criterion
Tieliang Gong , Yuxin Dong , Hong Chen , Bo Dong , Member, IEEE, and Chen Li

Abstract— Subsampling is an important technique to tackle
the computational challenges brought by big data. Many sub-
sampling procedures fall within the framework of importance
sampling, which assigns high sampling probabilities to the
samples appearing to have big impacts. When the noise level is
high, those sampling procedures tend to pick many outliers and
thus often do not perform satisfactorily in practice. To tackle
this issue, we design a new Markov subsampling strategy based
on Huber criterion (HMS) to construct an informative subset
from the noisy full data; the constructed subset then serves as
refined working data for efficient processing. HMS is built upon
a Metropolis–Hasting procedure, where the inclusion probability
of each sampling unit is determined using the Huber criterion to
prevent over scoring the outliers. Under mild conditions, we show
that the estimator based on the subsamples selected by HMS is
statistically consistent with a sub-Gaussian deviation bound. The
promising performance of HMS is demonstrated by extensive
studies on large-scale simulations and real data examples.

Index Terms— Markov chain, regression, robust inference,
subsampling.

I. INTRODUCTION

RAPID advancement in modern science and technology
introduces data with extraordinary size and complexity,

which brings great challenges to conventional machine learn-
ing and statistical methods. In the literature, two fundamental
approaches have emerged to tackle the challenges of big data:
one is the divide-and-conquer strategy [1], which involves
partitioning the data into manageable segments, implementing
a particular algorithm on these data segments in parallel, and
synthesizing a global output by aggregating the segmental
outputs; the other approach is the subsampling strategy [2],
which involves selecting a representative subset from the full
data as a surrogate and obtaining an output through further
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analyzation of the surrogate. The divide-and-conquer strategy
usually relies on high computational power with computing
clusters and is particularly effective when a dataset is too big
to fit in one computer. However, it still consumes considerable
computational resources and the access of distributed compu-
tational platforms is restricted by high cost. As a computa-
tionally cheaper alternative, subsampling gains its merit for
the situation when the computational resources are limited.

The key task of subsampling is to effectively identify impor-
tant samples in order to maintain the essential information
of the full data. This task is particularly challenging for big
data, which often comes with poor quality (high noise level)
due to the uncontrolled collecting process. In the literature,
informative sampling strategies are commonly adopted, where
important samples are given high probabilities to be selected.
During the last two decades, extensive studies have been con-
cluded on informative sampling, e.g., statistical leverage score
method [3]–[6], gradient method [7], and influence function
method [8]. Leverage score subsampling assigns the sampling
probabilities proportionally to a distance measure within the
covariates. It does not consider the response and hence is
sensitive to outliers. Both gradient-based subsampling and
influence function-based subsampling are using the response
together with the covariates to design sampling patterns,
in which the probabilities are computed proportionally to
the quadratic loss gradient or influence function. Although
they do avoid the interference of outliers to some extent,
the estimators calculated upon the associated subsamples are
highly dependent on a reliable pilot model, which may be
difficult to obtain in highly noisy setup.

Huber criterion [9] provides an effective way to deal with
this situation. It is a hybrid of square loss for relatively
small errors and absolute loss for relatively large ones and
hence is robust to heavy-tailed errors and outliers. Recent
studies have shown the great potential of Huber criterion
for robust estimation and inference. For example, Lambert-
Lacroix et al. [10] proposed to combine the Huber criterion
and adaptive penalty as lasso and showed that the resulting
estimator is more robust than adaptive LASSO in predic-
tion and variable selection tasks. Wang et al. [11] devel-
oped data-driven Huber-type methods for regression tasks
and established sub-Gaussian-type concentration bounds for
the Huber-type estimator. In [12], the adaptive Huber regres-
sion method was proposed, which significantly outperforms
least squares both in terms of mean and standard deviation.
Besides, it admits exponential-type concentration bounds when
the error variables have finite moments. Fan et al. [13]
investigated the nonasymptotic consistency of �1 regularized
robust M-estimator with Huber loss under the Markov chain
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setting. Chen et al. [14] additionally investigated collinearity
and explored the grouping effect in the Huber regression.
Meyer [15] proposed an alternative probabilistic interpreta-
tion of minimizing the Huber loss, which is equivalent to
minimizing an upper bound on the Kullback–Leibler (KL)
divergence in Laplacian settings. Wang et al. [16] achieved
robust forecasting based on the Huber criterion for both
non-Gaussian and nonstationary data.

In light of these advances, we aim to design a robust sub-
sampling procedure by adopting the Huber criterion. To this
end, this article proposes a Markov subsampling strategy
based on Huber criterion (HMS) for linear regression. The
procedure is given as follows. We first obtain a rough estimator
β0 based on a simple pilot selection, which determines the
importance of each sample by calculating the Huber loss.
We then perform subsampling from the full data D to gen-
erate a subset DS through the Metropolis–Hasting (MH)-
type procedure, where the sampling probability is assigned
according to the Huber loss. By doing so, samples with
large Huber loss are unlikely to be selected, and hence, the
noisy samples and outliers are ruled out with high probability.
Moreover, the MH sampling procedure and its variants require
a proposal distribution to specify the sample importance,
which is crucial to the success (e.g., fast convergence rate) of
these algorithms, as improper selection of proposal distribution
may result in misleading estimates. Different from MH-type
algorithms, HMS determines the sample importance directly
by the Huber criterion, where the turning parameter is prespec-
ified through the data-driven strategy and hence avoids such a
problem.

Our contributions are summarized as follows.

1) We develop a distribution-free HMS to construct an
informative subset from the noisy full data, which fur-
ther enables robust statistical inference and prediction.

2) Theoretically, we establish the statistical consistency
for the regression estimator based on the subsample
suggested by HMS in terms of Bahadur-type repre-
sentation [17], [18]. Our results indicate that, with
an appropriate robust parameter, the HMS-based esti-
mator achieves a nearly optimal convergence rate.
The theoretical results also extend the error analy-
sis of Huber estimator under independent and identi-
cally distributed (i.i.d.) samples to a Markov-dependent
setup.

3) Extensive empirical studies verify our theoretical find-
ings. The promising performance of HMS estimator is
also supported by both large-scale simulations and real
data examples.

The rest of this article is organized as follows. Section II sets
the notations and problem statement. Section III introduces the
proposed Markov subsampling algorithm based on the Huber
criterion. Section IV establishes the asymptotic analysis and
the corresponding error bounds of the subsampling estimator.
Section V demonstrates the experimental results on both sim-
ulation studies and real data examples. Section VI concludes
our work.

II. NOTATIONS AND PRELIMINARIES

A. Notations

To make our arguments in the following, some concepts and
notations being used throughout this article are introduced.

Let u = (u1, u2, . . . , ud)
� ∈ Rd and p ≥ 1, and we denote

the �p-norm and �∞-norm of u as �u�p = (
�d

i=1 |ui |p)1/p and
�u�∞ = max j∈[1,d] |u j |. For any w ∈ Rd , �u,w� = u�w. For
two scalars a and b, let a ∧ b = min{a, b} and a ∨ b =
max{a, b}. Given a matrix A ∈ R

m×n, the corresponding
spectral norm is defined by �A� = maxu∈Sn−1 �Au�2, where
Sn−1 is the unit sphere in Rn . If A ∈ Rn×n, we denote the
minimum and maximum eigenvalue of A by λmin(A) and
λmax(A), respectively. For a function f : Rd → R, we denote
its gradient vector by ∇ f ∈ R

d .
Definition 1 [19]: A random variable X ∈ R is said to

be sub-Gaussian with variance proxy σ 2 if E[X] = 0 and its
moment generating function satisfies

E[exp(s X)] ≤ exp

�
s2σ 2

2

�
∀s ∈ R. (1)

The following concepts are important in our theoretical
analysis. Let {Xi}i≥1 be a Markov chain on a general space
X with invariant probability distribution π . Let P(x, dy) be
a Markov transition kernel on a general space (X ,B(X ))
and P∗ be its adjoint. Denote L2(π) by the Hilbert space
consisting of square integrable functions with respect to π .
For any function h : X → R, we write π(h) := �

h(x)π(dx).
Define the norm of h ∈ L2(π) as �h�π = (�h, h�)1/2. Let
Pt (x, dy), (t ∈ N) be the t-step Markov transition kernel
corresponding to P; then, for i ∈ N, x ∈ X and a measurable
set S, Pt (x, S) = Pr(Xt+i ∈ S|Xi = x). Following the
above notations, we introduce the definitions of ergodicity and
spectral gap for a Markov chain.

Definition 2: Let M(x) be a nonnegative function. For an
initial probability measure ρ(·) on B(X ), a Markov chain is
uniformly ergodic if

�Pt (ρ, ·)− π(·)�TV ≤ T (x)tn (2)

for some T (x) < ∞ and t < 1, where � ·�TV denotes the total
variation norm.

A Markov chain is geometrically ergodic if (2) holds for
some t < 1, which eliminates the bounded assumption on
T (x). The dependence of a Markov chain can be characterized
by the absolute spectral gap, defined as follows.

Definition 3 (Absolute Spectral Gap): A Markov operator
P has a L2 spectral gap 1 − λ if

λ(P) := sup{�Ph�π : �h�π = 1, π(h) = 0} < 1. (3)

The quantity 1 − λ measures the convergence speed of
a Markov chain toward its stationary distribution π [20].
A smaller λ usually implies faster convergence speed and less
variable dependence.

B. Huber Regression

In this article, we consider the data generated from the
following linear regression model:

yi = �xi ,β
∗� + εi , i = 1, 2, . . . , n (4)
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where yi is the response, xi ∈ Rd is the covariate, εi is
the error, and β∗ ∈ Rd is the regression coefficient. It is
well known that the ordinary least-squares estimator βols
for (4) has a suboptimal polynomial-type deviation bound,
which makes it inappropriate for large-scale estimation and
inference. The key factor lies in the sensitivity of square loss
to outliers [21]. To overcome this drawback, the Huber loss [9],
[12] is proposed for achieving robust estimation. The Huber
loss is defined by

�τ (x) =
�

x2/2, if |x | ≤ τ

τ |x | − τ 2/2, if |x | > τ
(5)

where τ > 0 is the robustification parameter that controls
the bias and robustness. This function is quadratic with small
values of τ while growing linearly for large values of τ . The
specification of τ is critical in practical applications. Some
recent studies on deviation bounds of Huber regression [11],
[12] suggest that τ should be adaptive with the dimension of
input space, the moment condition of the noise distribution,
and the sample size to achieve robustness and unbiasedness
estimate. Specifically, Sun et al. [12] obtained near-optimal
deviation bounds of Huber regression for both low- and high-
dimensional cases. These observations will motivate us to
derive optimal bounds for HMS estimation.

Define the empirical loss function Lτ (β) =
(1/n)

�n
i=1 �τ (yi − �xi ,β�). The object of Huber regression

is to find an optimizer of the following convex optimization
problem:

β∗
τ = arg min

β∈Rd
Lτ (β) (6)

which can be easily solved via the iteratively reweighted
least-squares method [22]. Denote the derivative of Huber loss
�τ (x) as ϕτ , i.e.,

ϕτ = sign(x)min{|x |, τ }, x ∈ R. (7)

In this article, we focus on the setting that n � d . Denote
XS by the subsample matrix produced by HMS and x̄ =
�−1/2x. Suppose that � = Eπ (XSX�

S ) is positive definite,
and the regression errors εi satisfy E(εi |xi) = 0 and vi,δ =
E(|εi |1+δ|xi) < ∞. With this setup, we write

vδ = 1

n

n�
i=1

vi,δ and uδ = min
�
v

1/(1+δ)
δ ,

√
v1

	
, δ > 0.

III. MARKOV SUBSAMPLING BASED

ON HUBER CRITERION

As discussed before, the currently used informative mea-
sures (leverage score, gradient, and influence function) in
subsampling may not reflect the real contribution of each
sample in highly noisy settings, and hence, the resulting
estimator can be misleading. To alleviate this issue, we develop
a HMS to achieve robust estimation. The core idea is to select
the samples with small errors based on the Huber criterion by
the Markov chain Monte Carlo (MCMC) method. Concretely,
HMS consists of three steps: 1) pilot estimation; 2) Huber loss
calculation; and 3) Markov subsampling.

Fig. 1. log(AME) versus τ and n [AME: averaged mean error, defined
in (43)]. Here, we generate the data by (4), where n = 1M, d = 500 and εi
are i.i.d. from Student-t distribution with degree of freedom 2.

1) Pilot Estimation: The idea of pilot is widely applied in
the subsampling procedure [7], [8], [23], [24], where
the sampling probability is specified by a pilot estima-
tion. A popular way for calculating pilot is uniform
subsampling. To avoid bringing additional computa-
tional burden, we suggest the pilot β0 to be calculated
by least-squares criterion based on a small random
subset with user preference size d < r � n,
i.e., β0 = (X�

r Xr )
−1X�

r yr . It only takes additional
O(rd2) CPU time. We empirically demonstrate that the
HMS estimator does not rely heavily on the quality
of β0.

2) Huber Loss Calculation: The robustification parameter τ
in the Huber criterion plays a tradeoff role between bias
and robustness. In practical, τ is usually set to be fixed
through 95% asymptotic efficiency rule [9], [18], [25],
[26]. However, a fixed value may not guarantee a good
estimator, especially in highly noisy cases. As shown
in Fig. 1, τ should be adapted with n and d (consider
that n � d , we ignore the effect of d). It can be seen
that there exists some τ such that the absolute mean
error (AME) of β0 achieves minimum for a fixed sample
size n. In practice, we first restrict τ in a reasonable
range and select the optimal value then according to
the minimal AME principal. After specifying τ , the
importance of a sample (xi , yi) can be measured by the
corresponding Huber loss �τ (yi − x�

i β0). The greater
importance of a sample often comes with smaller Huber
loss.

3) Markov Subsampling: It has been shown that the Markov
chain samples may lead to more robust estimation than
i.i.d. counterparts in machine learning [27] and opti-
mization tasks [28], [29]. With this in mind, we tend to
implement probabilistic sampling through an MH-type
procedure. The core step, probabilistic acceptance rule,
is designed based on the Huber criterion. Concretely,
at some current sample zt , a randomly selected candidate

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 19,2024 at 03:39:07 UTC from IEEE Xplore.  Restrictions apply. 



GONG et al.: MARKOV SUBSAMPLING BASED ON HUBER CRITERION 2253

Algorithm 1 Huber Regression With Markov Subsampling
1: Input: Dataset D = (xi , yi )

n
i=1, subset DS = ∅, robus-

tification parameter τ , burn-in period: t0, subsample size
nsub � n.

2: Train a pilot estimator β0 by β0 = (X�
r Xr )

−1X�
r yr , where

(Xr , yr ) are the random subsamples with size n0 = nsub.
3: Randomly select a sample z1 from D, and set Ds = z1.
4: for 2 ≤ T ≤ (nsub + t0) do
5: while |DS| < T do
6: Randomly draw a candidate z∗ = (x∗, y∗)
7: Calculate the acceptance probability by

p = min



1,
�τ (yT − �xT ,β0�)
�τ (y∗ − �x∗,β0�)

�
(8)

8: Set DS = DS ∪ z∗ with probability p
9: If z∗ is accepted, set zt+1 = z∗

10: end while
11: end for
12: Denote the last nsub samples as DS = (XS, yS) =

{(xi , yi)}nsub
i=1 .

13: Solve βτ by Huber regression (6) based on DS .
14: Output: βτ .

sample z∗ is accepted with probability defined in (8).
If z∗ is accepted, we set DS = DS ∪ z∗ and z∗ = zt+1;
otherwise, we randomly select a sample as a candidate
and repeat this process. Finally, we accept the last
nsub elements generated by this procedure after a user-
specified burn-in period.

The detailed procedures are summarized in Algorithm 1.
Note that the probabilistic acceptance rule (8) tends to select
the samples with small Huber loss with high probability.
Moreover, the subsamples generated by Algorithm 1 constitute
an irreducible Markov chain and therefore are uniformly
ergodic [30], [31]. Computationally, HMS takes O(n0d2)
time for pilot estimation, O((nsub + t0)d) time for MH
sampling procedure, and O(nsubd2) time for optimizing (6)
(the L-BFGS-B optimization strategy [32] is adopted). Hence,
the total time complexity is O((2nsub + t0)d2), which is much
saving computational cost since nsub, t0 � n.

IV. THEORETICAL ASSESSMENTS OF HMS ESTIMATOR

In this section, we provide theoretical support for the
proposed HMS. In particular, we aim at bounding the dif-
ference between the HMS estimator βτ and the oracle β∗.
Previous theoretical studies on subsample estimator are based
on least squares [2], [5], [7], which has a closed-form
solution. However, the HMS estimator does not admit an
explicit closed-form representation and the robustification
parameter τ is not fixed, and all these pose the diffi-
culties in analyzing its statistical properties. To overcome
these issues, we adopt the Lepski-type method developed
in [12]. We first present several necessary assumptions as
follows.

Fig. 2. Illustration of sampling probabilities with different importance
measures. The data are generated by y = 5x + 1 + ε where n = 10 000 and
ε is a mixture of Gaussian and uniform distribution. The bright yellow and
red represent high and low sampling probability, respectively. Both leverage
score and gradient are inclined to select the points with large residuals near the
center. The influence tends to balance the regression design and the residual.
The HMS can further enhance the effect of the influence.

Assumption 1 [30] (Nonzero Spectral Gap Markov Chain):
The underlying Markov chain {Xi }n

i=1 is stationary with unique
invariant measure π and admits an absolute spectral gap 1−λ.

Assumption 2 (Bounded Covariates): There exists an enve-
lope function M : X → R, such that for any function f ,
max | f (X)| ≤ M(X) for π-almost every X .

Assumption 3 (Bounded (1 + δ)-Moments of Errors):
E(εi |Xi ) = 0. For some δ > 0 and vδ > 0, E[|εi |1+δ|Xi ] < vδ .

The absolute spectral gap 1 − λ in Assumption 1 usually
involves in spectral radius and geometrical ergodicity. Given
the transition kernel P of a Markov chain, denote its spectral
radius by λ∞(P) = limk→∞ �Pk − π(·)�1/k

π . It is known
that λ∞(P) ≤ λ(P) [30], where the equality holds for
reversible Markov chain. The condition 1 − λ(P) > 0 implies
geometrical ergodicity. A nonzero spectral gap is closely
related to other convergence criterion of Markov chains [33].
Assumption 2 requires that the covariates are bounded by an
envelope function, which can be a function of time, space,
or any forms of random variable. The boundedness assumption
is quite common in statistics and learning theory analysis
[34], [35]. Assumption 3 requires errors to be with finite
conditional (1 + δ)-moments, which covers a broad range of
heavy-tailed noises, including the Student-t , the Pareto, log
Normal, and log Gamma. Now, we are ready to present the
main results for HMS estimator.

The following lemmas play an important role to prove our
main theoretical results, where Lemma 1 is the Bernstein
inequality within Markov-dependent setting, Lemma 2 gives
the localized analysis on bounding βη, and Lemma 3 presents
the upper bound on the �2 error between an estimation β from
a d-dimensional hypersphere and β∗.

Lemma 1 [36]: Let {Xi}i≥1 be a stationary Markov chain
with invariant distribution π and right L2-spectral gap 1−λ ∈
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(0, 1]. Let fi : X → [−c, c] be a bounded function with
π( fi ) = 0 and σ 2 = �n

i=1 π( f 2
i )/n. Then, for any 0 ≤ t ≤

(1 − λ)/5c, we have for any 
 > 0,

P

�
1

n

n�
i=1

f (Xi) ≥ 




≤ exp

�
− n
2

2(A1σ 2 + A2c
)

�
(9)

where A1 = ((1 + λ)/(1 − λ)) and A2 = (1/3)1λ=0 +
(5/(1 − λ))1λ>0.

Lemma 2 [37]: Suppose that L is a convex function. Let
DL (β1,β2) = L(β1) − L(β2) − �∇L(β2),β1 − β2� and
D̄L (β1,β2) = DL(β1,β2)+DL (β2,β1). For βη = β∗+η(β−
β∗) with η ∈ (0, 1]

D̄L (βη,β
∗) ≤ ηD̄L (β,β

∗). (10)

Lemma 3 [12]: Suppose that vδ < ∞ for some 0 <
δ ≤ 1 and (E�u, x̄�4)1/4 ≤ C�u�2 for all u ∈ R

d and
some constant C > 0. Moreover, let τ, r > 0 satisfy τ ≥
2 max{(4vδ)1/(1+δ), 4C2r} and n ≥ (τ/r)2(d + t). Then, with
probability at least 1 − e−t

�∇Lτ (β)− ∇Lτ (β
∗),β − β∗� ≥ 1

4
��1/2(β − β∗)�2

2 (11)

uniformly over

β ∈ B0(r) = {β ∈ R
d : ��1/2(β − β∗)�2 ≤ r}.

Proposition 1 provides a concentration inequality for
��−1/2∇Lτ (β

∗)�2, which is fundamental to our theoretical
analysis.

Proposition 1: Suppose that the Markov chain samples
generated by Algorithm 1 are with invariant distribution π
and satisfy Assumptions 1–3; then, for any 0 < δ ≤ 1

��−1/2∇Lτ (β
∗)�2 ≤ 4

√
πC0 A2(d + t)τ

nsub

+ 4C0

�
A1vδτ 1−δ(d + t)

nsub
+ vδτ

−δ (12)

holds with confidence at least 1 − 2e−t , where A1 =
((1 + λ)/(1 − λ)) and A2 = (1/3)1(λ ≤ 0) + (5/(1 − λ))
1(λ > 0).

Proof: To bound ��−1/2∇Lτ (β
∗)�2, we first define a

random vector

ζ ∗ = �−1/2{∇Lτ (β
∗)− ∇ELτ (β

∗)}
= − 1

nsub

nsub�
i=1

{ζi x̄i − E(ζi x̄i)} (13)

where ζi = ϕτ (εi) and x̄i = �−1/2xi with � = E(xx�)
being positive. Assume that there exists a 1/2-Net N1/2 of the
unit sphere Sd−1 in Rd with |N1/2| ≤ 2d such that �ζ ∗�2 ≤
2 maxu∈N1/2 |�u, ζ ∗�|. Without loss of generality, we assume
that xi ’s are centralized. By Assumption 2, we know that xi

are sub-Gaussian vectors, i.e.,

P(|�u, x̄�| ≥ p) ≤ exp
� − p2�u�2

2

�
C2

0

�
(14)

for any u ∈ Sd−1 and p ∈ R, where C0 is a positive constant.
We then have

E|�u, x̄i �|k ≤ Ck
0 k�(k/2), k ≥ 1. (15)

It immediately implies
nsub�
i=1

E(ζi�u, x̄i �)2 ≤ 2C2
0τ

1−δ
nsub�
i=1

vi,1 = 2C2
0 nvδτ

1−δ

nsub�
i=1

E(ζi�u, x̄i �)k ≤ k!
2
(C0τ/2)k−22C2

0 nsubvδτ
1−δ (16)

for k ≥ 3. Furthermore, by Assumption 3, we have

E[ϕτ (ε)] = −E[(ε − τ )1(ε > τ)] + E[(−ε − τ )1(ε < −τ )].
(17)

Thus, for any k > 2

|Eϕτ (ε)| ≤ E[(|ε| − τ )1(|ε| > τ)] ≤ τ 1−k
E[|ε|k].

It follows from Lemma 1 with c = √
πC0τ and σ 2 =

2C2
0vδτ

1−δ that:

P

⎧⎨
⎩|�u, ζ ∗�| ≤ 2

√
πC0 A2ωτ

nsub
+ 2C0

�
A1vδτ t−1ω

nsub

⎫⎬
⎭

≥ 1 − 2e−ω (18)

for ∀ω > 0. By taking the union bound over u ∈ N1/2, the
following inequality:

�ζ ∗�2 ≤ 4
√
πC0 A2ωτ

n
+ 4C0

�
A1vδτ 1−δω

n
(19)

holds with confidence at least 1 − 2d+1 · e−ω. Then, we con-
sider the deterministic part ��−1/2∇ELτ (β

∗)�2, by direct
calculation

��−1/2∇ELτ (β
∗)�2 ≤ sup

u∈Sd−1

1

nsub

nsub�
i=1

E|ζi�u, x̄i �| ≤ vδτ
−δ.

Let ω = d + t , and by combining above inequality and (19),
we obtain the stated result.

Theorem 1: Suppose that the Markov chain samples gen-
erated by Algorithm 1 are with invariant distribution π and
satisfy Assumptions 1–3; then, for any t > 0, with confi-
dence at least 1 − 2e−t , the HMS estimator βτ with τ =
(1/Aλ)(nsub/(d + t))max{(1/(1+δ)),(1/2)} satisfies

�βτ − β∗�2 ≤ C1λmax(�
1/2)Aλ

�
d + t

nsub

�min
�

δ
1+δ ,

1
2

�
(20)

provided that nsub ≥ C2(d + t), where C1,C2 >
0 are the constants independent of n and d , Aλ =
max{((1 + λ)/(1 − λ))1/2, (1/3)1λ=0 + (5/(1 − λ))1λ>0}.

Proof: To begin with, recall that B0(r) = {β ∈ Rd :
��1/2(β − β∗)�2 ≤ r} for some r > 0. Define βτ,η := β∗ +
η(βτ − β∗) ∈ B0(r), where η ∈ (0, 1]. Then, we know from
Lemma 2 that

�∇Lτ (βτ,η)− ∇Lτ (β
∗),βτ,η − β∗�

≤ η�∇Lτ (βτ )− ∇Lτ (β
∗),βτ − β∗�. (21)

It is easy to see ∇Lτ (βτ ) = 0 due to the Karush–Kuhn–Tucker
(KKT) condition. According to the mean value theorem

∇Lτ (βτ,η)− ∇Lτ (β
∗)
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=
� 1

0
∇2 Lτ (tβτ,η + (1 − t)β∗) dt (βτ,η − β∗). (22)

Assume that there exist a constant c > 0 such that

min
β∈Rd :�β−β∗�2≤r

λmin(∇2 Lτ (β)) ≥ C0

and, hence, C0�βτ,η − β∗�2
2 ≤ �∇Lτ (β

∗)�2 · �βτ,η − β∗�2;
reducing the result yields

�βτ,η − β∗�2 ≤ C−1
0 �∇Lτ (β

∗)�2. (23)

Since βτ,η ∈ B0(r), according to Lemma 3 with r = τ/(4C2
0),

we get

�∇Lτ (βτ,η)− ∇Lτ (β
∗),β − β∗� ≥ 1

4
��1/2(βτ,η − β∗)�2

2

(24)

with confidence at least 1 − e−t . Then, by Proposition 1,

��−1/2∇Lτ (β
∗)�2 ≤ 4

√
πC0 A2(d + t)τ

nsub
+ vδτ

−δ

+ 4C0

�
A1vδτ 1−δ(d + t)

nsub

:= r∗ (25)

holds with confidence at least 1 − e−t . Combining (24)
and (25), we know that with confidence at least
1 − 2e−t ,

�βτ,η − β∗�2 ≤ 4 r∗ (26)

provided that n ≥ C1(d + t), where C1 > 0 is a
constant depending only on C0. The constructed estima-
tor βτ,η lies in the interior of the ball with radius r .
By the construction in the beginning of the proof, this
enforces η = 1, and thus, βτ = βτ,η. This completes the
proof.

Remark 1: Theorem 1 indicates that the HMS estimator βτ
is consistent under moderate conditions, i.e., �βτ − β∗� → 0
as nsub → ∞. The founding condition requires that the
Markov chain generated by Algorithm 1 has absolute spectral
gap. HMS almost trivially meets this condition since the
corresponding Markov chain is uniformly ergodic and hence
geometrically ergodic. Moreover, the error bound of HMS
only requires finite moments of error εi , which is weaker than
sub-Gaussian error condition in linear regression models for
subsampling [2], [7], [38]. We find that τ should adapt with
subsample size nsub, the input dimension d , the moments of
error term, and the dependence of underlying Markov chain.
In particular, with an appropriate choice of τ , the convergence
rate of HMS estimator is with O((d/nsub)

min{(δ/(1+δ)),(1/2)})
decay, which matches the near-optimal deviations in the i.i.d.
case [12]. Note that the Markov dependence impacts on τ in
the way that the subsample size nsub is discounted by a factor
Aλ. In other words, in order to achieve τ -adaptation effect, the
required subsample size increases with Aλ when transferring
from i.i.d. sample setup to Markov dependence setup. Further-
more, a small value for λ implies a fast convergence rate of
HMS estimator.

Theorem 2: Under the same conditions with
Theorem 1, for any t > 0, the HMS estimator βτ with
τ = ((1 − λ)/(1 + λ))1/2(nsub/((d + t) log d))(1/(2(1+δ)))
satisfies

P

�������1/2(βτ − β∗)− 1

nsub

nsub�
i=1

ϕτ (εi)x̄i

�����
2

≥ C3

�
1 + λ

1 − λ

�
(d + t) log d

nsub

�
≤ 3 e−t (27)

provided that nsub ≥ C4(d + t), where C3 and C4 are the
constants independent n and d .

Proof: If r1 = 4 r∗, we know from the proof of Theorem
1 that

P
�
βτ ∈ B0(r1)

� ≥ 1 − 2 e−t (28)

provided that nsub ≥ C1(d + t). Define the random process
�(β) = Lτ (β)− ELτ (β) and

�(β) = �−1/2{∇Lτ (β)− ∇Lτ (β
∗)} − �1/2(β − β∗). (29)

Our goal is to bound ��(βτ )�2 = ��−1/2(βτ − β∗) +
�−1/2∇Lτ (β

∗)�2, and the key step lies in bounding the
supremum of empirical process {�(β) : β ∈ B0(r)}.
To achieve this goal, we need to bound E�(β) and
�(β)− E�(β).

Denote β̂ as the convex combination of β and β∗. By the
mean value theorem, we see that

E�(β) = �−1/2{∇ELτ (β)− ∇ELτ (β
∗)} − �1/2(β − β∗)

= {�−1/2∇2
ELτ (β̂)�

−1/2 − Id}�1/2(β − β∗) (30)

hence

sup
β∈B0(r)

�E�(β)�2

≤ r × sup
β∈B0(r)

��−1/2∇2
ELτ (β̂)�

−1/2 − Id�. (31)

We know from Assumption 2 that �xi�∞ ≤ M(x), where
M(x) : x → R is a envelope function. Consider β ∈ B0(r)
and u ∈ Sd−1, and we have

|u�{�−1/2∇2
ELτ (β̂)�

−1/2 − Id}u|
= 1

nsub

nsub�
i=1

E
�
1{yi − �xi ,β� ≥ τ }�u, x̄i�2�

≤ 1

nsub

nsub�
i=1

E

�
(1{|εi | ≥ τ/2}

+ 1{x�
i (β − β∗) > τ/2})�u, x̄i �2

	
≤ 1

nsub

nsub�
i=1

E
�
(1{|εi | ≥ τ/2} + 1{�xi�∞ > τ/2r})�u, x̄i �2�

≤ 1

nsub

nsub�
i=1

E
�
(1{|εi | ≥ τ/2} + 1{�M(x) > τ/2r})�u, x̄i �2

�

≤ 21+δσ 2τ−1−δvδ +
�

A1 log d

nsub
+ 4C A1σ

4r2 (32)
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which implies

sup
β∈B0(r)

�E�(β)�2

≤ 21+δσ 2τ−1−δvδ +
�

A1 log d

nsub
+ 4C A1σ

4r2. (33)

Next, we focus on bounding �(β) − E�(β). To this end,
we first rewrite

�(β)− E�(β) = �−1/2{∇�(β)− ∇�(β∗)}. (34)

Set

� = �1/2(β − β∗) (35)

and define the empirical process

�̄(�) := �(β)− E�(β). (36)

It is easy to check that �̄(0) = 0 and E�̄(�) = 0. For any
u, v ∈ S

d−1 and m ∈ R

E{m√
nu�∇��̄(�)v}

≤
nsub�
i=1



1 + m2

nsub
E

� 
�u, x̄i �2�v, x̄i�2 + E|�u, x̄�2�v, x̄�|2

!

× e
|m|√
nsub

�
|�u,x̄i ��v,x̄i �|+E|�u,x̄�2�v,x̄�|

�"�

≤
nsub�
i=1



1 + e

|m|√
nsub

m2

nsub
E
#
e

|m|√
nsub |�u, x̄i��v, x̄i �|

$

+ e
|m|√
nsub

m2

nsub
E

�
�u, x̄i �2�v, x̄i�2e

|m|√
nsub

|�u,x̄i ��v,x̄i �|
"�

≤
n�

i=1



1 + e

|m|√
nsub

m2

nsub
max

w∈Sd−1
E

�
e

|m|√
nsub �w, x̄�2

"

+ e
|m|√
nsub

m2

nsub
max

w∈Sd−1
E

�
�w, x̄�4e

|m|√
nsub �w, x̄�2

"�

≤ exp



m2e

|m|√
nsub

�
max

w∈Sd−1
E

�
e

|m|√
nsub �w, x̄�2

"

+ max
w∈Sd−1

E

�
�w, x̄�4e

|m|√
nsub �w, x̄�2

"��
. (37)

Recall that each xi is sub-Gaussian random variable, and
hence, there exist constants A3 and A4 that depend only on
C0 such that for any |m| ≤ (nsub/A3)

1/2

sup
u,v∈Sd−1

E{m√
nsubu�∇��̄(�)v} ≤ exp{A4m2/2}. (38)

In [39, Th. A.3], we see that

P

�
sup

β∈B0(r)
��(β)− E�(β)�2 ≤ 6A4r

√
8d + 2t

�
≥ 1 − e−t

(39)

when nsub ≥ A4(8d + 2t). Combining (33) and (39) together,
we get

sup
β∈B0(r1)

��−1/2{∇Lτ (β)− ∇Lτ (β
∗)}−�1/2(β − β∗)�2

TABLE I

STATISTICS OF REAL-WORLD DATASETS

Fig. 3. Comparisons on different sampling patterns. The oracle, pilot, and
subsampled estimator are denoted by the red real line, the green dashed line,
and the blue dashed line, respectively.

≤ 21+δσ 2τ−1−δvδ +
�

A1 log d

nsub

+ 4C A1σ
4r2

1 τ
−2 + 6A4

�
8d + 2t

nsub
r1 (40)

with confidence at least 1−e−t . This together with (28) yields
the final result.

Remark 2: Theorem 2 provides a nonasymptotic Bahadur
representation [18] for HMS estimator βτ when the error
terms have finite (1 + δ)th moments. It further implies that
the approximation of βτ − β∗ has a subexponential tail. For
the truncated random variable ϕτ (ε), we can see that

|Eϕτ (ε)| = −E[(ε − τ )1(ε > τ)] + E[(−ε − τ )1(ε < −τ )]
≤ E[(|ε| − τ )1(|ε| > τ)]
≤ τ 1−δ

E(|ε|δ). (41)

This together with (27) shows that the HMS estimator βτ
achieves nonasymptotic robustness against heavy-tailed noise.
Specifically, by taking

t = log(nsub), τ �
�

1 − λ

1 + λ

�
nsub

d + log(nsub)
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Fig. 4. Left: AME curve of HMS. Right: comparisons on − log(AME) of
different sampling procedures.

Fig. 5. Comparisons on AME of different sampling procedures. In all
settings, we vary the subsample size nsub = sr ∗ n with sr =
[0.002, 0.004, 0.006, 0.008, 0.01].

we have�����βτ − β∗ − 1

nsub

nsub�
i=1

ϕτ (εi)�
−1xi

�����
2

= O
��

1 + λ

1 − λ

�
d + log(nsub)

nsub



(42)

with confidence at least 1 − O(n−1
sub). From an asymptotic

viewpoint, it implies that if d = o(nsub) as nsub → ∞, then
for any deterministic vector u ∈ Rd , �u,βτ − β∗� converges
to n−1

sub

�nsub
i=1 ϕτ (εi)�

−1xi in distribution.

V. EXPERIMENTAL RESULTS

This section aims to evaluate the empirical performance
of the proposed HMS procedure. All numerical studies are
implemented with Python 3.8 under Ubuntu 16.04 operation
system with 2.2-GHz CPUs and 256-GB memory.

A. Sampling Pattern

We first investigate the performance of HMS by comparing
the sampling pattern to leverage sampling, gradient-based
sampling (GS), and influence-based sampling (IS). The toy
data are generated by y = 2 x + ε with n = 50 and d = 1,

where noise term comes from the Student’s t distribution
with two degrees of freedom, i.e., ε ∼ t(2). Considering that
both GS and IS require a pilot to determine the sampling
probability, here, we fix the pilot (marked by a green dashed
line) for a fair comparison. The pilot is specified by uniform
sampling n0 = 10 points. The turning parameter τ of HMS
is set to 0.1. We plot nsub = 10 data points (marked in
red) selected by different sampling approaches, where the size
denotes the corresponding assigned sampling probability. The
estimators of four sampling approaches are then calculated
based on the subsampled data. As shown in Fig. 3, we see
that the selected data points of HMS are more close to the
oracle (marked by red real line) than competitors, and hence
the subsampled estimator (marked by blue dashed line) can
better recover the ground-truth estimator. Moreover, it can be
observed that HMS can return a reliable estimator even if
the pilot is deviated from the oracle, which implies its great
potential on selecting informative data from the noisy data.

B. Phase Transition

Theorem (1) implies that

− log(�βτ − β∗�) � δ

1 + δ
log(nsub)− δ

1 + δ
log(Aλvδ)

0 < δ ≤ 1.

In order to validate the phase transition behavior of HMS
estimator, we generate the data by (4) with n = 10K and
d = 50 and sample independent noise from t(d f ), which has
finite (1 + δ)th moments provided δ < d f − 1 and infinite
d f th moment. The oracle β∗ is generated from the discrete
uniform distribution {±3,±2,±1, 0}. Following the setting
in [12], we set nsub = 1000 and δ = d f − 1 − 0.05. The
turning parameter τ is specified by τ = σ(nsub/t)1/2, where
σ 2 = (1/n)

�n
i=1(yi − ȳ) with ȳ = (1/n)

�n
i=1 yi . The quality

of the fit is measured by the AME

AME = 1

K

K�
k=1

�βτk − β∗�. (43)

Fig. 4 shows the AME comparisons for HMS, least square
with uniform sampling, and Huber regression with uniform
sampling. One can observe that the AME of HMS estimator
is decreasing with the increase of δ. In particular, HMS can
achieve lower AME than Huber and LS with varying degrees
of freedom. This further exhibits the significant advantages of
HMS in robust regression.

C. Simulation Studies

We generate the data by y = Xβ∗ + ε [7], where the
n × d design matrix X is constructed by a mixture of
Gaussian (1/2)N(μ1, σ

2
1 ) + (1/2)N(μ2, σ

2
2 ) in two differ-

ent ways: (M1)μ1 = −2, σ1 = 3, μ2 = 2, σ2 = 10;
(M2)μ1 = 0, σ1 = 3, μ2 = 0, and σ2 = 10. We gener-
ate two different types of i.i.d. noise, including log-normal
distribution εi ∼ Lognormal(0, 1) and Student-t distribution
εi ∼ t(2), and both of them are heavy tailed and produce
outliers with large variance. We denote the models combin-
ing these design matrices and noise distributions as follows:
M1(LN),M1(t),M2(LN), and M2(t).
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Fig. 6. Boxplots of AME for different subsampling methods (n = 10K and d = 50).

TABLE II

COMPARISONS ON TIME COST (MILLISECONDS) FOR DIFFERENT SAMPLING METHODS. THE TIME COST OF HMS CONSISTS
OF TWO PARTS: SELECTION OF τ (LEFT) + SAMPLING (RIGHT)

TABLE III

APE COMPARISONS (MEAN ± STANDARD DEVIATION) FOR DIFFERENT SAMPLING METHODS FOR REAL DATASETS

TABLE IV

APE COMPARISONS (MEAN ± STANDARD DEVIATION) FOR DIFFERENT SAMPLING METHODS FOR REAL DATASETS

We compare the proposed HMS with several representa-
tive methods, including uniform sampling (UNIF), leverage
subsampling (LEV) [3], unweighted leverage subsampling
(LEVUNW), shrinkage leverage subsampling (SLEV) [5],
GS [7], and IS [8]. The sampling probability of SLEV is a

convex combination of leverage and uniform distribution, i.e.,
πSLEV

i = απLEV
i + (1 − α)πUNIF

i . Here, we consider three
different shrinkage factors α = 0.1, 0.5, and 0.9 for SLEV,
denoted by SLEV0.1, SLEV0.5, and SLEV0.9, respectively.
LEVUNW performs the same sampling procedure as LEV but
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Fig. 7. Boxplots of AME for different subsampling methods (n = 10K and d = 50).

Fig. 8. Boxplots of AME for different subsampling methods (n = 1M and d = 500).

solves the unweighted least-squares problem instead. For IS,
the sampling weight for (xi ·yi) is proportional to �ψβ(xi , yi)�,
where ψβ(xi , yi) = (yi −xiβ)

�−1
n xi is the influence function.

For GS, IS, and HMS, the pilot is calculated by uniform
sampling with size n0 = nsub, and the parameter τ in HMS is
specified through a grid search strategy.

For each model, we set n = 100K and 1M and correspond-
ing d = 50 and 500. Denote sr by the sampling ratio, and we
set subsample size by nsub = sr∗n with sr = 0.001, 0.005, and
0.01. Each result is reported over K = 100 runs repeatedly
and the mean error is calculated.

The AME comparisons for different sampling procedures
are shown in Figs. 5–9, and the corresponding running time
comparison is shown in Table II. Several observations can be
made about the reported results.

1) Leverage-based sampling procedures perform slightly
worse than uniform sampling when data are corrupted by
heavy-tailed noises, and this is because leverage cannot

exactly reflect the true importance of each sample in
such cases.

2) GS and IS behave similarly in different settings. The rea-
son is that the design matrix X consists of a mixture of
i.i.d. Gaussian entries, leading to the covariance matrix
�n that approximates a diagonal matrix, which makes
influence function assigns similar sampling probability
as gradient does.

3) GS and IS perform worse than leverage-based
approaches and uniform sampling when the sampling
ratio is small. The main reason is that both of them
need a pilot to guide sampling, and inefficient training
for the pilot will deteriorate their performance. However,
HMS performs significantly better than GS and IS with
the same pilot. This demonstrates the tolerance of HMS
to imperfect pilots.

4) HMS performs much better than the other competitors in
almost all settings, both in AME and running time. The
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Fig. 9. Boxplots of AME for different subsampling methods (n = 1M and d = 500).

efficiency improvement of HMS is still prominent even
considering the time for hyperparameter (τ ) selection,
which implies the great advantage of HMS on selecting
the informative samples under high-level noise settings.

D. Real Data Examples

We further evaluate the proposed HMS on six real-
world datasets, including Appliances Energy Prediction, Poker
Hand, Gas Turbine CO and NOx Emission , Wave Energy
Converters, Physicochemical Properties of Protein Tertiary
Structure (PPPTS), and Beijing Multi-Site Air-Quality. All
these datasets come from the UCI machine learning reposi-
tory https://archive.ics.uci.edu/ml/datasets.php, covering vari-
ous prediction tasks. For Poker Hand dataset, we only use the
training set. For Wave Energy Converters dataset, we remove
16 columns due to collinearity. For Beijing Multi-Site Air-
Quality dataset, we remove four text-valued columns and take
PM2.5 as the prediction target. The results are averaged over
K = 100 runs of each experiment, and the average prediction
errors (APEs)

APE = 1

K

K�
k=1

�ŷk − y�

are reported in Tables III and IV. It can be observed that HMS
can achieve superior performance in these regression tasks.
Specifically, HMS almost always reach the lowest error and
standard deviation when the sampling ratio remains small, and
this shows the great potential of applying HMS to deal with
big data. For the Gas Emission, Wave Energy, and Air-Quality
datasets, HMS sometimes yields suboptimal results compared
to other methods. This is because in real-world scenarios, the
properties of the noise are unknown, and some of the assump-
tions are not guaranteed to be hold, i.e., bounded covariates
or bounded 1 + δ order error moments. The convergence of
HMS is thus influenced and results in suboptimal samples.
However, HMS still achieves the highest performance in most

Fig. 10. Comparisons on different sampling patterns with n = 200 and
ε ∼ t(2).

conditions, which demonstrates its outstanding robustness over
other methods.

VI. DISCUSSION AND FUTURE RESEARCH

In this article, we propose a HMS to achieve robust estima-
tion. The deviation bounds of HMS estimator are established.
We find that the HMS estimator exhibits a similar phase
transition to that in the independent setup. The only difference
is up to a factor ((1 − λ)/(1 + λ))1/2, defined by the absolute
spectral gap λ of underlying Markov chain. Extensive studies
on large-scale simulations and real data examples demonstrate
the effectiveness of HMS. There are many opportunities along
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Fig. 11. Comparisons on different sampling patterns with n = 50 and
ε ∼ Lognormal(0, 1).

Fig. 12. Comparisons on different sampling patterns with n = 200 and
ε ∼ Lognormal(0, 1).

the line of current research, such as how to deduce the lower
bounds for HMS estimator and how to perform HMS in
high-dimensional cases. All these problems deserve further
research.

APPENDIX

In this section, we add supplementary experiments on
different data scales. In Figs. 10–12, we give additional exper-
iment results of sampling patterns with different subsampling

Fig. 13. Comparisons on AME of different sampling procedures with
n = 5000, d = 25, and nsub = 50.

Fig. 14. Comparisons on AME of different sampling procedures n = 20 000,
d = 100, and nsub = 200.

strategies. We keep the same settings as “Sampling Pattern”
and set number of samples n = {50, 200}, distribution of
noises ε ∼ {t(2),Lognormal(0, 1)}. In all of these settings,
we can derive the same conclusion that HMS achieves the
lowest estimation error even when the pilot is deviated from
the oracle.

In Figs. 13 and 14, we give additional experiment results
of the phase transition behavior. Again, we keep the same
parameter settings as “Phase Transition” and alter the simu-
lation data size to n = 5000, d = 25, and nsub = 50, and
n = 20 000, d = 100, and nsub = 200. As can be seen, HMS
still achieves lower AME than Huber and LS consistently
under various data scales.
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