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Abstract

Motivation: Structured semantic resources, for example, biological knowledge bases and ontologies, formally de-
fine biological concepts, entities and their semantic relationships, manifested as structured axioms and unstructured
texts (e.g. textual definitions). The resources contain accurate expressions of biological reality and have been used
by machine-learning models to assist intelligent applications like knowledge discovery. The current methods use
both the axioms and definitions as plain texts in representation learning (RL). However, since the axioms are
machine-readable while the natural language is human-understandable, difference in meaning of token and struc-
ture impedes the representations to encode desirable biological knowledge.

Results: We propose ERBK, a RL model of bio-entities. Instead of using the axioms and definitions as a textual cor-
pus, our method uses knowledge graph embedding method and deep convolutional neural models to encode the
axioms and definitions respectively. The representations could not only encode more underlying biological know-
ledge but also be further applied to zero-shot circumstance where existing approaches fall short. Experimental eval-
uations show that ERBK outperforms the existing methods for predicting protein–protein interactions and gene–dis-
ease associations. Moreover, it shows that ERBK still maintains promising performance under the zero-shot
circumstance. We believe the representations and the method have certain generality and could extend to other
types of bio-relation.

Availability and implementation: The source code is available at the gitlab repository https://gitlab.com/BioAI/erbk.

Contact: cli@xjtu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

To address the growing need of automatically discovering know-
ledge and relationships of bio-entities, structured semantic resour-
ces, for example, biological knowledge bases (KBs) (Consortium
et al., 2018; Hastings et al., 2016; Fabregat et al., 2016) and ontolo-
gies (Consortium, 2018; Köhler et al., 2019; Jupp et al., 2016) are
being actively studied using deep learning models as encyclopedic in-
formation about bio-entities contained in the resources could be use-
ful biases to improve their vector representations (Alshahrani et al.,
2017; Alshahrani and Hoehndorf, 2018; Smaili et al., 2018a,b).

Structured axioms and unstructured texts are two important
sources of the information in the KBs and ontologies. The structured
axioms formally describe properties of bio-entities and relations be-
tween them using the Semantic Web language OWL description
logic (DL) (Grau et al., 2008) which supports DL style reasoning

and advanced querying; the unstructured texts describe bio-entities
using the natural language which enables human experts to under-
stand the precise meaning of bio-entities (Hoehndorf et al., 2015b).
Figure 1 represents some of the axioms and texts extracted from
Gene Ontology (GO) (Consortium, 2018) and Uniprot (Consortium
et al., 2018) as a graph in which the circles represent GO classes, the
diamond represents a protein and the labeled arrows represent types
of the axioms that hold between these classes; GO:0016774 and
GO:0008776 are the GO classes’ identifiers while B5Y7W0 is the
protein’s identifier. Take two axioms in Figure 1 as examples:

GO:0008776 is_a GO:0016774

B5Y7W0 classified_with GO:0008776

The first axiom states that the class ‘acetate kinase activity’
(GO:0008776) is a subclass of ‘phosphotransferase activity’
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(GO:0016774) while the second axiom states that the protein ‘acet-
ate kinase’ (B5Y7W0) is annotated by GO:0008776, which means
that the protein has a molecular function of ‘acetate kinase activity’
(GO:0008776). The unstructured texts, as shown in the boxes of
Figure 1, provide definitions for ontology classes or descriptions for
bio-entities; the unstructured texts also contain other information
including labels or synonyms associated with ontology classes and
bio-entities. The structured axioms and unstructured texts contain
rich and complementary information about bio-entities and thereby
express biological reality accurately and comprehensively. Hence,
considering both of them could lead to better representation learn-
ing (RL) of bio-entities and accordingly benefit various downstream
task, for example, biological knowledge discovery.

There are two existing strategies for using the structured seman-
tic resources to learn vector representations of bio-entities. The first
strategy is applied by Alshahrani et al. (2017) and Alshahrani and
Hoehndorf (2018) to construct knowledge graphs (KGs) using the
structured axioms and apply a graph embedding technique to learn
vector representations of bio-entities. The second strategy is applied
by Smaili et al. (2018a) and Smaili et al. (2018b) to treat the axioms
and the unstructured texts as a textual corpora; a word2vec model
(Mikolov et al., 2013a,b) is then used to learn vector representations
of bio-entities.

We argue that the representations learned by these two strategies
encode the knowledge from the KBs and ontologies only to a limited
degree. The first strategy neglects to use the unstructured texts.
However, the texts contain a great deal of information about bio-
entities and ontology classes. Moreover, as ontology-based annota-
tions are not available for all bio-entities, the unstructured texts are
supplemental and essential resources for RL model to learn. As for
the second strategy, although it makes use of both the structured
axioms and unstructured texts, it does not fuse the information in a
reasonable manner. The sentences in the corpora mix the Semantic
Web language and natural language. For example, as shown in
Figure 1, the definition of the ontology class whose id is

GO:0016774 is expressed as the sentence ‘<http://purl.obolibrary.org/
obo/GO_0016774> <http://purl.obolibrary.o rg/obo/IAO_0000115>
Catalysis of the transfer of a phosphorus-containing group from one
compound (donor) to a carboxyl group (acceptor).’, where ‘<http://purl.
obolibrary.org/obo/GO_0016774>’ is the Internationalized Resource
Identifiers (IRI) of the ontology class, and ‘<http://purl.obolibrary.org/
obo/IAO_0000115>’ is the IRI of the annotation property defin-
ition. Since the two languages have different syntax rules regarding
the structure and meanings of tokens, for example, the semantics of
operators in OWL are different from words in the natural language, the
representations learned from word co-occurrence might not be able to
capture the underlying knowledge within the axioms and texts. It
remains a big challenge for RL of biological entities how to seamlessly
fuse the heterogeneous information in the unstructured texts and struc-
tured axioms. What’s more, for an entity without any ontology-based
annotation, the above-mentioned methods could only learn a representa-
tion by random guessing. Therefore, they could not be applied to the
zero-shot circumstance, that is, predicting bio-relations for which at least
one participating entity has no ontology-based annotation. How to deal
with this challenging circumstance is another significant obstacle for
widely applying these embedding methods.

To overcome the challenges mentioned above, we propose a
novel RL method named Enhanced Representation with Biological
Knowledge (ERBK). Instead of regarding the texts and axioms as a
whole corpus, ERBK encodes the texts and axioms separately.
Specifically, given an entity, the axioms encoding the relationships
between the entity and the other entities or ontology classes are con-
verted into triples and encoded using a knowledge graph embedding
algorithm which is TransH (Wang et al., 2014), while its textual def-
inition is encoded using deep convolutional neural networks (CNN).
To fuse the features learned from the texts and axioms, a training
objective is used to maximize the likelihood of predicting the rela-
tionships and definitions simultaneously. In order to evaluate
ERBK, we apply it on Gene Ontology (GO) and GOA (Gene
Ontology Annotations) to generate vector representations of pro-
teins, and on PhenomeNET (Hoehndorf et al., 2011; Rodrı́guez-
Garcı́a et al., 2017) ontology and its annotations to generate vector
representations of genes and diseases. We then evaluate the repre-
sentations on two bio-relation prediction tasks, which are PPI pre-
diction and gene–disease association prediction. The results show
that our method consistently outperforms existing methods on the
two tasks. What’s more, we evaluate our model under the zero-shot
circumstance. The results reveal that, even in the absence of the
structured axioms, the representations learned using only the un-
structured texts still maintain promising performance on the two
tasks. Further analyses illustrate that ERBK has the potential to dis-
cover novel bio-relations such as gene–disease associations. By tak-
ing advantage of the unstructured and structured information, more
underlying knowledge is captured by the representations learned
using ERBK. We believe the representations and the method have
certain generality and could be applied to other types of entities and
support several downstream applications.

2 Related works

In recent years, several approaches have been proposed to learn vec-
tor representations of biological entities. Some methods attempt to
learn vector representations based on features derived from high-
throughput techniques, such as sequential information of DNA or
proteins (Chen et al., 2019; You et al., 2018b; Kulmanov et al.,
2018) or structural information of molecules (De Cao and Kipf,
2018; You et al., 2018a; Jin et al., 2018), others by incorporating
prior knowledge from ontologies and biological KBs (Alshahrani
et al., 2017; Alshahrani and Hoehndorf, 2018; Smaili et al.,
2018a,b), which type of methods will be mainly discussed in this
section.

Alshahrani et al. (2017) and Alshahrani and Hoehndorf (2018)
construct KGs using ontologies and ontology-based annotations and
apply graph embedding methods to generate vector representations
of ontology classes and the annotated entities. Specifically,
Alshahrani et al. (2017) firstly build a KG with ontology classes and

Label: acetate kinase
Function: Catalyzes the 

formation of acetyl phosphate 
from acetate and ATP. Can also 

catalyze the reverse reaction.

B5Y7W0

GO:0016774 GO:0008776

Label: acetate kinase 
activity

Definition: Catalysis of the 
reaction: ATP + acetate = 

ADP + acetyl phosphate.

Label: phosphotransferase 
activity, carboxyl group as 

acceptor
Definition: Catalysis of the 

transfer of a phosphorus-
containing group from one 
compound (donor) to a 

carboxyl group (acceptor).
classified_with

is_a

Fig. 1. An example of the structured axioms and unstructured texts from GO and

Uniprot. The figure shows ontology classes as circles, a protein as a diamond, labels

and definitions in boxes and types of axioms as edges
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the annotated entities as nodes and types of axioms as edges. Then it
uses DeepWalk (Perozzi et al., 2014) to generate a textual corpus
consisting of a set of edge-labeled random walks, that is, sequences
composed of names of the nodes and edges. Then, a skip-gram
model is used to generate vector representations of the nodes and
edges. The method used by Alshahrani and Hoehndorf (2018) is
similar, but the generated sequences include only the node names.
The representations learned by Alshahrani et al. (2017) could be
applied to predict functions of biological entities or drug target rela-
tions, while the representations learned by Alshahrani and
Hoehndorf (2018) could be used to predict gene–disease associa-
tions based on phenotypic similarity.

In contrast to the above-mentioned methods, Smaili et al.
(2018a) and Smaili et al. (2018b) regard an axiom expressed in
OWL as a sentence, thus the axioms could be used to construct a
textual corpus. Within each sentence, Smaili et al. (2018a) use IRI to
denote ontology classes and OWL properties. Smaili et al. (2018b),
the successor of Smaili et al. (2018a), further incorporates ontology
meta-data into the corpus. A skip-gram model and pre-trained word
vectors on biomedical literature are used to learn vector representa-
tions of bio-entities. The representations learned by these two meth-
ods could be used to predict PPIs and gene–disease associations.

Our work is inspired by DKRL model proposed by Xie et al.
(2016). DKRL is a RL method for knowledge graphs taking advan-
tage of unstructured descriptions of entities. DKRL applies TransE
(Bordes et al., 2013) to encode fact triples and two encoders to en-
code the descriptions which are continuous bag-of-words encoder
(CBOW) and CNN. Considering that TransE does not do well in
dealing with one-to-many/many-to-one/many-to-many relations
which usually occur in the structured axioms, we replace TransE
with TransH. Compare with the above-mentioned methods, our
method further leverages the unstructured texts which are widely
available and contain detailed information associated with bio-
entities, and integrates the unstructured texts with the structured
axioms in a reasonable manner making the representations encode
more knowledge. What’s more, our method is able to learn a repre-
sentation for an entity with no ontology-based annotation in which
circumstance the mentioned methods fall short.

3 Materials and methods

We propose ERBK in this paper to enhance vector representations
of bio-entities by fusing the information of the structured axioms
and the unstructured texts provided by biological KBs and ontolo-
gies. The representations could be used for automatically discover-
ing bio-relations, such as PPIs and gene–disease associations. We
firstly construct fact triples based on the structured axioms. Then,
TransH is applied to encode the fact triples while CNN is applied to
encode the unstructured texts. Finally, vector representations of bio-
entities are generated by fusing semantic features learned from the
triples and texts.

3.1 Construction of fact triples
The structured axioms represented in OWL may be complex and
not easily be converted into fact triples (Rodrı́guez-Garcı́a and
Hoehndorf, 2018; Hoehndorf et al., 2015b), for example, an axiom
involving an object property which is associated with a complex
class description instead of a single class. We construct fact triples
by selecting the structured axioms which could be easily mapped to
fact triples and contain crucial information of bio-entities. We build
two sets of fact triples: one is built on GO and GOA of proteins in
order to obtain vector representations of proteins, while the other is
built on PhenomeNET ontology and its annotations of genes and
diseases to obtain their representations.

We downloaded GO (http://www.geneontology.org/ontology/)
in OWL format which was released on June 10, 2019. We down-
loaded GOA (http://www.ebi.ac.uk/GOA) of human proteins which
was released on June 2, 2019 and GOA of yeast proteins released on
July 1, 2019. We removed all the annotations with evidence code
IEA as well as ND. In total, we obtain 194 569 GO to human

protein annotations, 32 009 GO to yeast protein annotations. The
number of unique GO classes associated with human and yeast pro-
teins is 44 990, the number of unique human proteins is 15 718 and
the number of unique yeast proteins is 3856. For a fact triple con-
structed from a GO axiom, a GO class is regarded as head entity or
tail entity, while relation is constructed by the object and annotation
properties of GO including ends_during, regulates, has_part, negati-
vely_regulates, positively_regulates, starts_during, part_of, occur-
s_in, happens_during and subClassOf. For a fact triple constructed
from a GOA axiom, an annotated protein is regarded as head entity
while the GO class is tail entity. We define four types of relation
which are has_function, is_involved_in, is_located_within and
is_annotated_with; is_annotated_with links proteins with GO
classes without any type information, while the other three types of
relation connect proteins with GO classes delineating the particular
molecular functions they have, the biological processes they are
involved in and the certain cellular components they are located
within, which allow the representations to encode in-depth know-
ledge regarding biological properties of proteins.

We downloaded PhenomeNET ontology in OWL format from
the AberOWL repository (http://aber-owl.net) (Hoehndorf et al.,
2015a) on December 1, 2019. The mouse phenotype to mouse gene
annotations were downloaded from Mouse Genome Informatics
database (MGI) (http://www.informatics.jax.org/) (Smith and
Eppig, 2015) on December 7, 2019. The human phenotype to
human gene annotations and the human phenotype to human dis-
ease annotations were downloaded from Human Phenotype
Ontology database (HPO) (https://hpo.jax.org/app/download/anno
tation) (Robinson et al., 2008) on December 7, 2019. In total, we
obtain 170 048 unique mouse phenotype to mouse gene annota-
tions, 53 188 unique human phenotype to human gene annotations,
and 44 557 unique human phenotype to human disease annotations.
The ontology and the annotations contain 224 626 PhenomeNET
ontology classes, 3131 unique diseases, 8534 unique mouse genes
and 1379 unique human genes. Similarly, for a fact triple con-
structed from a PhenomeNET axiom, we regard PhenomeNET
ontology as head entity or tail entity, while relation is constructed
by the object and annotation properties of PhenomeNET including
equivalentClass, has_quality, has_modifier and subClassOf; we fur-
ther define has_entity as another type of relation. equivalentClass
links two PhenomeNET ontologies which are semantically similar.
As a PhenomeNET ontology refers to a phenotype, has_entity links
the PhenomeNET ontology to an ontology referring to the affected
entity of that phenotype; has_quality links the PhenomeNET ontol-
ogy to an ontology referring to the specific quality of that entity
being affected; has_modifier links the PhenomeNET ontology to an
ontology referring to a modifier that specifies how the quality is
affected. These links are based on EQ definitions (Mungall et al.,
2010) of PhenomeNET ontologies. To make it more clear, we take
the PhenomeNET ontology ‘increased plasma cell number’ as an ex-
ample; has_entity will link it to ‘plasma cell’, has_quality will link it
to ‘increased amount’ while has_modifier will link it to ‘abnormal’.
For a fact triple constructed from a PhenomeNET annotation
axiom, an annotated gene or disease is regarded as head entity while
the PhenomeNET ontology is tail entity, and relation is defined as
has_phenotype. These fact triples link genes or diseases not only to
related phenotypes but also to related molecular and anatomical in-
formation as well as the mapping phenotypes of other species, which
enable the representations to encode comprehensive relationships
between genes and diseases in terms of phenotype.

3.2 Representation learning
As introduced in Section 3.1, the fact triples we construct have
many more unique entities than unique relations in which case one-
to-many/many-to-one/many-to-many relations are very common.
Therefore, we apply TransH rather than TransE since TransH is
more capable of dealing with these kinds of relations while main-
taining computational efficiency. Inspired by DKRL, our model
firstly learns vector representations of the structured axioms and un-
structured texts independently, and then fuse the representations
through optimizing an objective function.
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We use ðh; r; tÞ 2 F to denote a fact triple; h; t 2 E denote head
entity and tail entity while r 2 R denotes relation; F, E, R denote the
set of the fact triples, entities and relations respectively. hg and tg de-
note the representation of head entity and tail entity learned from a
fact triple which take value in Rk. Given a fact triple, TransH
(Wang et al., 2014) firstly projects hg and tg to a hyperplane wr and
the projections are denoted by h? and t? with restricting jjwrjj2 ¼ 1,
and then minimizes a score function to learn hg and tg as follows:

h? ¼ hg �w>r hgwr; t? ¼ tg �w>r tgwr (1)

frðhg; tgÞ ¼ jjh? þ dr � t?jj (2)

dr denotes a relation-specific translation vector which is in the
hyperplane. The score function indicates that the projection of tail
entity t? should be the nearest neighbor of h? þ dr.

As for the unstructured texts, we use descriptions of biological
entities provided by biological KBs and definitions of ontology
classes provided by ontologies. Specifically, the protein descriptions
are obtained from Uniprot; the gene descriptions are obtained from
Alliance (The Alliance of Genome Resources Consortium, 2020);
the disease definitions are provided by Human Disease Ontology
(Schriml et al., 2019); the definitions of the ontology classes are pro-
vided by GO or PhenomeNET. Based on DKRL Xie et al. (2016),
CNN is applied to learn semantic information in the texts. The
CNN consists of two layers. The input of the CNN is a word embed-
ding sequence ðx1; x2; . . . ; xNÞ, where x represents a word embed-
ding and N is the length. The output of the second convolution layer
is calculated as follows:

x
ð1Þ
i ¼ xi:iþk�1 ¼ ½xT

i ;x
T
iþ1; . . . ; xT

iþk�1�
T (3)

z
ð1Þ
i ¼ rðWð1Þx

ð1Þ
i þ b

ð1Þ
i Þ (4)

x
ð2Þ
i ¼ maxðzð1Þn�i ; . . . ; z

ð1Þ
n�ðiþ1Þ�1Þ (5)

zð2Þ ¼
X

i¼1;...;m

r Wð2Þx
ð2Þ
i þ b

ð2Þ
i

� �

m
(6)

x
ð1Þ
i and x

ð2Þ
i denote the ith inputs of the first and second convolu-

tional layers. Wð1Þ and Wð2Þ are the convolution kernels, b
ð1Þ
i and

b
ð2Þ
i are the biases, and r is the activation function. z

ð1Þ
i denotes the

ith output of the first convolution layer. m is the number of the input
vectors of the second convolution layer; zð2Þ denotes its output
which is the representation learned from the unstructured texts
(referred to as he and te in this paper) taking value in Rk. Figure 2
shows an overview of ERBK model taking the protein and GO
classes in Figure 1 as an example. hg; tg; he and te are trained by

minimizing the same margin-based objective as TransH (Wang
et al., 2014):

Lðh;dr;tÞ¼
X
ðh;r;tÞ2F

X
ðh0 ;r0 ;t0 Þ2F0

maxðcþfrðh;tÞ�fr0 ðh0;t0Þ;0Þ (7)

Critically, Lðh;dr; tÞ represents the sum of Lðhg;dr; tgÞ;
Lðhe; dr; teÞ; Lðhg;dr; teÞ and Lðhe; dr; tgÞ. By sharing dr and wr, the

two types of representations are mapped into a unified vector space
in order to fuse the semantic information of the structured axioms
and unstructured texts. c > 0 is a margin hyper-parameter. F0

denotes the negative set of the fact triples which is constructed the
same way as TransH Wang et al. (2014).

3.3 Implementation details
ERBK takes plain texts and fact triples as input and outputs two
types of entity representations. The vectors dr; wr; hg and tg are ini-
tialized randomly; while he and te are initialized by using the pre-
trained word embeddings on PubMed Central articles provided by
Smaili et al. (2018b). The dimension of the word embeddings and
the two kinds of representations is 200. The Adam method (Kingma
and Ba, 2014) is used for optimization.

4 Results

We conduct experiments on two entity-related bio-relation predic-
tion tasks which are PPI prediction and gene–diseases association
prediction. We further evaluate our method under the zero-shot cir-
cumstance where the bio-relations are predicted for which at least
one participating entity has no ontology-based annotation.

4.1 Dataset
Different from the ontologies and annotations we downloaded to
learn vector representations of bio-entities (see Section 3.1), the
dataset introduced in this section is used to evaluate the representa-
tions for predicting PPI and gene–disease association.

The PPI dataset for human (Homo sapiens) and yeast are
obtained from the STRING database (Szklarczyk et al., 2019).
Following the same settings of the experiments in (Smaili et al.,
2018b), we consider the interactions from the STRING positive.
However, we generate the negative interaction set in a different
way. Inspired by (Guo et al., 2008), we construct a negative inter-
action set by pairing proteins in different cellular compartments.
Specifically, we firstly obtain the sub-cellular localization informa-
tion of proteins from Uniprot. We then categorize proteins into eight
groups based on the eight types of localization: cytoplasm, nucleus,
mitochondrion, endoplasmic reticulum, golgi apparatus, peroxi-
some, vacuole and cytoplasm & nucleus. The negative cases are con-
structed by pairing proteins from one group with proteins from the

CNN

GO:0008776:

The Representations of  
Biological Entities and  

Ontology Classes

B5Y7W0:

TransH

Training  
Object

Function: Catalyzes the  
formation of acetyl  
phosphate from acetate  
and ATP. Can also  
catalyze the reverse  
reaction.

Definition: Catalysis  
of the reaction: ATP+  
acetate = ADP +  
acetyl phosphate.

has_function

GO:0016774 GO:0016301

GO:0006085 GO:0006082

GO:0071616

GO:0005524

B5Y7W0

GO:0008776

B5Y7W0

GO:0008776

Fig. 2. Overview of ERBK model
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other while excluding the positive cases. Compared with randomly
sub-sampling cases among all the pairs not occurring in the

STRING as negative as (Smaili et al., 2018b) does, the negative cases
constructed in our way are more likely to be true. The number of

the positive cases and the number of the negative cases are equal.
We split the data into a training and testing set and the statistics are
listed in Table 1. We construct three datasets for testing denoted as

(e-e), (e-d) and (d-d) respectively, and the (e-d) and (d-d) datasets
are used in the zero-shot circumstance. e denotes a protein with at
least one GOA which in turn has a pre-trained representation, while

d denotes a protein which does not have any ontology-based annota-
tion and therefore has no pre-trained representation. For a protein

with no pre-trained representation, ERBK takes its description
obtained from Uniprot as input and the output of the CNN is used
as the protein’s representation. We ensure that all of the proteins in

the training and testing data have descriptions provided by Uniprot.
The gene–disease association dataset are provided by MGI

including human gene-human disease associations and mouse gene-
human disease associations. We consider all of the associations not

occurring in the data as negative. We also split the data into a train-
ing and testing set and the statistics are listed in Table 2. Similarly,
we construct the (e-e), (e-d) and (d-d) datasets and the gene descrip-

tions and disease definitions are used to generate representations for
the genes or diseases without any pre-trained representation. We en-

sure that all of the genes or diseases in the dataset have the related
descriptions or definitions.

We perform two-class classification and use F-measure and AUC

value under ROC curve as our evaluation measures.

4.2 Methods for comparison
We mainly compare our method with Alshahrani et al. (2017);
Alshahrani and Hoehndorf (2018); Smaili et al. (2018b). The

method proposed by Alshahrani et al. (2017) is named ‘Neuro-
Symbolic method’, the method proposed by Alshahrani and
Hoehndorf (2018) is named ‘SmuDGE’ and the method proposed by

Smaili et al. (2018b) is named ‘OPA2Vec’. We do not compare our
method with Smaili et al. (2018a) since Smaili et al. (2018b)
achieves better performance than it. We also implement TransH

(Wang et al., 2014) and DKRL (Xie et al., 2016) (using CNN as the
sentence encoder) as the baselines.

Our model learns two vector representations for each entity and
the experimental results using he; te are numerically close to the

results of hg and tg. Therefore, we report only the experimental
results using he and te.

A neural network model is used to predict PPI and gene–disease
association using the representations learned by ERBK and the base-
lines. The network model has three layers including an input layer, a

hidden layer and a softmax layer. The network takes concatenation
of two entities’ representations as input; the dimension of the hidden
layer is 256; the Adam method is used for optimization.

4.3 PPI prediction
This task predicts if two proteins interact. Table 3 shows the evalu-
ation results of PPI on the non-splitted dataset, that is, the dataset
combining the (e-e), (e-d) and (d-d) datasets of PPI. The results re-
veal that ERBK outperforms the baseline methods. To further
understand the characteristics of ERBK, we evaluate it by using the
splitted datsets.

Table 4 shows the results of PPI on the (e-e) dataset. We have the
following observations: (i) ERBK outperforms the baseline methods
in F1 and AUC on both the human and yeast data. The results indi-
cate that vector representations of proteins are well enhanced
through our method. (ii) ERBK outperforms OPA2Vec while both
methods use the structured axioms and unstructured texts; as for the
other three baseline methods using only the structured axioms,
SmuDGE and Neuro-Symbolic method outperform TransH. On the
one hand, the results indicate that the ability of ERBK to encode the
structured axioms might be limited by TransH. On the other hand,
since ERBK still outperforms other methods, it demonstrates the ef-
fectiveness of our information fusing strategy. (iii) Compared with
TransH, ERBK achieves better performance which shows that incor-
porating the unstructured texts could improve the representations.
(iv) ERBK outperforms DKRL which indicates that TransH has
more advantage over TransE. Although the improvement of ERBK
may not be evident in the (e-e) dataset, the advancement of our
method is substantial under the zero-shot circumstance.

Under the zero-shot circumstance, Neuro-Symbolic method
(Alshahrani et al., 2017), OPA2Vec (Smaili et al., 2018b) and
SmuDGE (Alshahrani and Hoehndorf, 2018) have to predict PPI
randomly since there are no pre-trained vector representations for
the proteins. However, ERBK could make predictions based on their

Table 1. Statistics of the PPI dataset

Species Dataset Interactions Proteins

Human Train 200 000 8000

(e-e) 2000 3065

(e-d) and (d-e) 2000 399

(d-d) 2000 396

Yeast Train 100 000 2000

(e-e) 1000 1179

(e-d) and (d-e) 1000 199

(d-d) 1000 200

Note: The third column indicates the number of PPI and the fourth column

indicates the number of unique proteins contained in the corresponding

dataset.

Table 2. Statistics of the gene–disease association dataset

Species Dataset Associations Disease Gene

Mouse Train 4069 1299 1136

(e-e) 540 390 382

(e-d) and (d-e) 400 339 319

(d-d) 494 276 278

Human Train 4573 2092 945

(e-e) 360 334 277

(e-d) and (d-e) 400 363 301

(d-d) 465 339 238

Note: The third column indicates the number of gene–disease associations,

the fourth and fifth column indicates the number of unique diseases and gens

contained in the corresponding dataset.

Table 3. Evaluation results of PPI on the non-splitted dataset

Species Model Accuracy Recall Precision F1 AUC

Human OPA2Vec 66.2 49.9 69.4 58.1 70.8

SmuDGE 64.7 73.4 66.5 69.8 67.8

Neuro-Symbolic

method

65.3 77.0 65.9 71.0 69.2

TransH 63.2 40.2 66.6 50.1 66.5

DKRL 82.3 73.6 89.3 80.7 89.7

ERBK 82.8 77.7 87.4 82.3 90.3

Yeast OPA2Vec 64.3 75.7 65.7 70.3 69.3

SmuDGE 63.8 75.2 63.3 68.7 68.9

Neuro-Symbolic

method

66.9 77.0 67.7 72.0 71.5

TransH 62.8 40.8 64.5 50.0 68.3

DKRL 82.3 75.0 87.8 80.9 88.7

ERBK 83.0 75.3 89.1 81.6 88.9

Note: The results are given in percentage. The best results are bold.
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descriptions obtained from Uniprot. For the sake of brevity, Table 5
compares ERBK with only DKRL; the results of other models are
shown in Supplementary Tables S1 and S2.

Compared with the results on the (e-e) dataset, we have the fol-
lowing observations: (i) most of the measures in the (e-d) and (d-d)
datasets experience a decrease which might be due to the lack of
prior knowledge encoded in the structured axioms. (ii) Our method
maintains stable performance on the (e-d) dataset and still achieves
relatively good results on the (d-d) dataset. These results show that,
even in the absence of the structured axioms, the representations
learned by ERBK using only the unstructured texts could still be reli-
able for PPI prediction.

4.4 Gene–disease association prediction
This task predicts gene–disease association. Table 6 shows the evalu-
ation results of gene–disease association on the non-splitted dataset.
The results reveal that ERBK outperforms the baseline methods
which further demonstrate that the representations of genes and dis-
eases are well enhanced through our method. Similarly, we evaluate
it by using the different splitted datasets.

Table 7 shows the results on the (e-e) dataset. We have the fol-
lowing observations: (i) ERBK outperforms the baselines on the
human data; ERBK achieves the best F1 and a comparable AUC on
the mouse data. To further investigate the potential of our method
on the mouse data, we removed the fact triples involving
equivalentClass and has_modifier and re-trained vector representa-
tions of the genes and the diseases using our method and TransH.
The results on the (e-e) dataset are denoted as ‘TransH-pruned’ and
‘ERBK-pruned’. As shown in Table 7, after simplifying the relation-
ships of the fact triples, the performance of TransH and our method
improve. The results indicate that TransH is not able to take full

advantage of the structured axioms and might therefore hamper the
performance of our method in predicting associations between
mouse genes and human diseases. Therefore, there is a great poten-
tial of the strategy fusing the structured axioms and unstructured
texts as much value of the structured axioms remains to be
exploited. (ii) ERBK achieves better performance than TransH and
DKRL and ERBK-pruned outperforms TransH-pruned. The results
demonstrate the advantage of incorporating the unstructured texts
and the effectiveness of our information fusing strategy. The results
of TransH-pruned and ERBK-pruned on the (e-d), (d-d) and non-
splitted datasets are shown in Supplementary Tables S3, S4 and S5.

As for the zero-shot circumstance, for the sake of brevity,
Table 8 compares the F-measure and AUC values of only DKRL and
ERBK; the results of other models are shown in Supplementary
Tables S3 and S4. Consistent with the results of PPI, our method
achieves better results compared to other baselines, which further
proves the applicability of our method under the zero-shot circum-
stance. What’s more, since the unstructured texts play a main role in
the performance of our method under the zero-shot circumstance,
we investigate their effect by using different human gene descrip-
tions. Specifically, we replaced the human gene descriptions

Table 4. Evaluation results of PPI on the (e-e) dataset

Species Model Accuracy Recall Precision F1 AUC

Human OPA2Vec 83.6 82.2 84.7 83.4 91.0

SmuDGE 84.4 80.0 87.9 83.8 91.3

Neuro-Symbolic

method

83.8 78.3 88.1 82.9 90.6

TransH 82.7 79.4 85.2 82.2 90.0

DKRL 84.7 79.3 89.2 83.9 91.2

ERBK 85.3 83.4 86.9 85.1 91.5

Yeast OPA2Vec 83.6 80.4 86.2 83.2 91.1

SmuDGE 84.3 84.1 84.8 84.4 91.4

Neuro-Symbolic

method

84.3 79.4 88.3 83.7 91.1

TransH 82.8 82.7 83.2 82.9 90.8

DKRL 84.1 79.4 87.9 83.5 91.2

ERBK 84.6 81.1 89.1 84.9 91.6

Note: The results are given in percentage. The best results are bold.

Table 5. Evaluation results of PPI on the (e-d), (d-e) and (d-d)

datasets

Test set Species Model Accuracy Recall Precision F1 AUC

e-d or d-e Human DKRL 82.7 74.8 88.7 81.2 90.7

ERBK 82.9 78.0 86.5 82.0 91.0

Yeast DKRL 82.2 75.8 87.2 81.1 89.1

ERBK 83.0 75.8 88.9 81.8 89.1

d-d Human DKRL 79.5 66.7 89.7 76.5 87.2

ERBK 80.3 69.8 88.5 78.0 87.9

Yeast DKRL 80.7 71.6 87.9 78.9 85.0

ERBK 81.3 71.8 89.0 79.5 85.2

Note: The results are given in percentage. The best results are bold.

Table 6. Evaluation results of gene–disease association on the non-

splitted dataset

Species Model Accuracy Recall Precision F1 AUC

Human OPA2Vec 66.2 39.4 60.7 47.8 67.3

SmuDGE 65.8 40.1 69.7 50.9 68.4

Neuro-Symbolic

method

65.6 54.4 66.5 59.8 67.2

TransH 61.7 33.3 57.6 42.2 63.5

DKRL 81.6 70.4 89.4 78.8 91.7

ERBK 85.3 76.5 91.9 83.5 93.0

Mouse OPA2Vec 61.9 38.4 58.4 46.3 63.7

SmuDGE 62.1 41.8 61.7 49.7 64.0

Neuro-Symbolic

method

57.7 34.8 51.8 41.6 57.9

TransH 57.3 38.4 53.7 44.8 56.1

DKRL 72.6 67.8 71.3 69.5 79.9

ERBK 75.1 74.2 73.3 73.7 78.2

Note: The results are given in percentage. The best results are bold.

Table 7. Evaluation results of gene–disease association on the (e-e)

dataset

Species Model Accuracy Recall Precision F1 AUC

Human OPA2Vec 90.7 95.2 84.3 89.4 96.4

SmuDGE 92.1 87.1 93.1 90.0 97.1

Neuro-Symbolic

method

86.1 82.3 83.6 82.9 93.4

TransH 82.8 77.4 80.0 78.7 90.1

TransH-pruned 84.8 88.6 81.1 84.7 92.5

DKRL 89.1 86.2 90.3 88.2 95.9

ERBK 93.2 93.4 92.4 92.9 97.9

ERBK-pruned 94.0 93.9 93.4 93.7 98.2

Mouse OPA2Vec 82.4 78.6 77.6 78.1 87.4

SmuDGE 79.0 70.2 75.6 72.8 84.8

Neuro-Symbolic

method

72.4 60.7 67.1 63.8 75.2

TransH 71.0 57.1 65.8 61.1 72.3

TransH-pruned 73.0 65.7 68.9 67.3 77.9

DKRL 76.9 70.9 71.8 71.3 82.9

ERBK 81.1 81.7 76.8 79.2 84.5

ERBK-pruned 82.8 84.7 75.3 79.7 86.8

Note: The results are given in percentage. The best results are bold.
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downloaded from the Alliance database by the descriptions down-
loaded from RefSeq database (O’Leary et al., 2016), which are
human-curated and contain more comprehensive information
regarding human gene functions. We then re-trained vector repre-
sentations of human genes using DKRL and ERBK. The results are
shown in Table 8 denoted as ‘DKRL-RGD’ and ‘ERBK-RGD’. The
results using the RefSeq descriptions outperform the results using
the Alliance descriptions. This finding reveals that the better un-
structured texts lead to more reliable predictions of our model which
not only demonstrates the advantage of our model but also the po-
tential of the strategy fusing the unstructured texts and the struc-
tured axioms.

5 Discussion

5.1 Potential for discovering novel gene–disease

associations
We analyze the potential of our model in predicting novel bio-
relations. We apply our model to predict 19 novel human gene-
human disease pairs proposed by (Wang et al., 2019) [The pairs are
extracted from Table 7 and Table 8 in Wang et al. (2019)]; all of the
pairs are validated by publications and are not included in our gene–
disease association dataset. The pairs contain 9 unique diseases and
14 unique genes; 4 diseases have the pre-trained representations
while other diseases and genes do not have any pre-trained represen-
tation and thereby 11 pairs are d-e and 8 pairs are d-d. Among all
the pairs, 9 d-e pairs and 5 d-d pairs are predicted by ERBK correct-
ly; the results are shown in Supplementary Table S5. It reflects the
potential of our representations to be used for automatically discov-
ering bio-relations, such as gene–disease associations. We believe
that by learning the representations for more bio-entities, ERBK
could be adopted to perform early bio-relations discovery that is be-
yond the reach of current experimental approaches.

5.2 Potential applications of ERBK
As ERBK is applicable to multiple circumstances and shows robust-
ness, it could be used to support several downstream applications.
In addition to PPI and gene–disease association, ERBK could further
be applied to other bio-relations prediction tasks such as genotype–
phenotype relationship prediction, RNA–disease association predic-
tion, wherever there are ontologies, annotations, ontology defini-
tions and entity descriptions. What’s more, the representations of
ontologies, relations and entities learned by ERBK could further be
exploited by other machine learning or deep learning methods such
as graph neural networks (GNNs) regarding ontology and its anno-
tations as graph-structured data to support more biological tasks.
For example, in order to combine genotype–phenotype data of dif-
ferent species from multiple databases, it is required to construct
links between phenotype ontologies. This problem could be

addressed by GNN as a task of network embedding and matching
which network consists of a phenotype ontology, its affected
entity(s), quality and the modifier based on its EQ definition. The
representations learned by ERBK could be used as the input features.
Moreover, ERBK could also be applied to the field of biomedical
text mining to support named entity recognition (Habibi et al.,
2017) or even event-based mining (Yu et al., 2018; Lou et al.,
2020).

5.3 Limitations and future work
Our work has several limitations and we intend to address them as
our future work. As Tables 6, 7 and 8 show, compared with the
results on the human data, the results of our method on the mouse
data experience a decrease. An association between a gene and a dis-
ease is predicted based on phenotypic similarity between the disease
and the gene. For the human data, both the human genes and the
human diseases are annotated by HPO ontology; for the mouse
data, the human diseases are annotated by HPO ontology while the
mouse genes are annotated by MP ontology (Smith et al., 2004).
Compared with computing phenotypic similarity between two HPO
ontologies, computing the similarity between a MP ontology and a
HPO ontology relies on more complex axioms, such as the axioms
involving has_quality, has_modifier or equivalent_Class provided
by PhenomeNET. As analyzed in Section 4.4, TransH might not be
able to fully exploit the complex axioms regarding mouse genes and
human diseases. Therefore, in order to exploit the potential of the
strategy fusing the unstructured texts and the structured axioms, it
will be necessary to further investigate how to encode more know-
ledge within the structured axioms and fuse it with the unstructured
texts in a better way.

In contrast to the structured axioms and unstructured text, a
larger scale of knowledge information is contained in biomedical lit-
erature. Learning representations by further taking advantage of
these data holds the promise of modeling more entity-centric know-
ledge. It has been validated that large-scale pre-trained language
models such as BERT (Devlin et al., 2018) implicitly capture real-
world knowledge from natural language texts (Petroni et al., 2019;
Logan et al., 2019). Therefore, in the future, we expect to investigate
how to make the pre-trained models to focus on capturing know-
ledge about bio-entities from biomedical literature.

6 Conclusion

The RL model, ERBK, proposed in this paper, improves the bio-enti-
ties’ representations by fusing the heterogeneous information from
the structured axioms and unstructured texts contained in biological
ontologies and KBs. The representations could not only encode
more biological knowledge so that support other computational
methods achieve better performance on several tasks including bio-
relation prediction, knowledge discovery etc., but also be further
applied to the zero-shot circumstance where existing approaches fall
short. The representations are evaluated on the task of PPI and
gene–disease association prediction. The experimental results show
that our method outperforms other baselines. Furthermore, our
method maintains good performance under the zero-shot circum-
stance. We believe the representations and the method have certain
generality and could be applied to other types of entities and support
several downstream applications.
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