
© 2020 Journal of Pathology Informatics | Published by Wolters Kluwer - Medknow 1

Abstract

Original Article

IntroductIon

Digitizing pathology requires biomedical informatic tools
which could facilitate storage and delivery of visual data
which pathologists usually observe via a light microscope. The
current challenge is that conventional image file systems cannot
support the wide range of functionalities required for reading
and writing of extremely large images. Over the last decade,
the presence of whole‑slide images (WSIs) in digital pathology
drives the development of various open and proprietary file
formats and tools. In 2013, introduction of OpenSlide[1] marks
the establishment of mainstream file formats, which has been
widely adopted to store histopathological images, and becomes
a de facto standard in digital pathology. Nevertheless, to our
knowledge, none of the files readable by OpenSlide and other
file formats offer ways to modify existing files and create a
new one. A typical uncompressed WSI with full resolution
can range between 1 and 20 GB in file size,[2,3] and a typical
compressed WSI may easily take 1 GB of storage.[4] The

monstrous file size makes them relatively slow to process
using conventional techniques. This tremendously increases
computational burden and causes difficulties in providing
holistic features for intelligent software. Thus, currently
there are still limitations to modify WSIs. It remains to be a
technical bottleneck obstructing data scientists to fully exploit
the information and potentials in these images.[5]

The existing solutions separate a WSI into a number of
smaller tiles using read‑only libraries, e.g., OpenSlide[1] or
Bio‑Formats,[6] before processing by conventional image
processing tools and libraries, e.g., OpenCV and Sci‑kit

Background: Whole‑slide images (WSIs) as a kind of image data are rapidly growing in the digital pathology domain. With unusual high
resolution, these images make them hard to be supported by conventional tools or file formats. Thus, it obstructs data sharing and automated
analysis. Here, we propose a library, LibMI, along with its open and standardized image file format. They can be used together to efficiently
read, write, modify, and annotate large images. Materials and Methods: LibMI utilizes the concept of pyramid image structure and lazy
propagation from a segment tree algorithm to support reading and modifying and to guarantee that both operations have linear time complexity.
Further, a cache mechanism was introduced to speed up the program. Results: LibMI is an open and efficient library for histopathological
image processing. To demonstrate its functions, we applied it to several tasks including image thresholding, microscopic color correction,
and storing pixel‑wise information on WSIs. The result shows that libMI is particularly suitable for modifying large images. Furthermore,
compared with congeneric libraries and file formats, libMI and modifiable multiscale image (MMSI) run 18.237 times faster on read‑only
tasks. Conclusions: The combination of libMI library and MMSI file format enables developers to efficiently read and modify WSIs, thus
can assist in pixel‑wise image processing on extremely large images to promote building image processing pipeline. The library together with
the data schema is freely available on GitLab: https://gitlab.com/BioAI/libMI.

Keywords: Extremely large image, image processing, open format, whole‑slide image

Access this article online

Quick Response Code:
Website:
www.jpathinformatics.org

DOI:
10.4103/jpi.jpi_11_20

Address for correspondence: Prof. Chen Li,
School of Electronic and Information Engineering, Xi’an Jiaotong University,

Xianning West Road, Xi’an Shaanxi, 710049 China.
E‑mail: cli@xjtu.edu.cn

This is an open access journal, and articles are distributed under the terms of the Creative
Commons Attribution‑NonCommercial‑ShareAlike 4.0 License, which allows others to
remix, tweak, and build upon the work non‑commercially, as long as appropriate credit
is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Dong Y, Puttapirat P, Deng J, Zhang X, Li C. LibMI:
An open source library for efficient histopathological image processing. J
Pathol Inform 2020;11:26.
Available FREE in open access from: http://www.jpathinformatics.org/text.
asp?2020/11/1/26/292718

LibMI: An Open Source Library for Efficient Histopathological
Image Processing

Yuxin Dong1, Pargorn Puttapirat1, Jingyi Deng1, Xiangrong Zhang2, Chen Li1

1School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China, 2Institute of Intelligent Information Processing, Xidian University,
Xi’an, Shaanxi, China

Submitted: 15‑Feb‑2020 Revised: 20‑Apr‑2020 Accepted: 25‑Jun‑2020 Published: 21‑Aug‑2020

J Pathol Inform 2020, 1:26 http://www.jpathinformatics.org/content/11/1/26

Journal of Pathology Informatics2

image.[7‑11] Due to extremely large file size and image
dimension, it is difficult to efficiently access WSIs while
maintaining a decent reading and especially modifying speed.
Furthermore, these images have different proprietary formats
created by different WSI scanner vendors,[1] e.g., Aperio
(.svs, .tif) and Hamamatsu (.vms, .vmu, .ndpi). Each vendor
provides a proprietary software to view the WSIs generated by
its own scanners. The existence of proprietary file formats and
software for viewing and analyzing presents three problems.
First, the file formats directly obstruct free data sharing and
curation of open data in this domain. Second, the proprietary
viewing and analysis software prevents the development of
general analysis pipelines which can be modified for different
purposes. They also cannot be extended by existing open
source image processing libraries. Third, the ad hoc solutions
cannot support easy reuse of existing annotations and the
interoperation between analysis software.[12,13] Large image
processing lacks an universal and comprehensive solution.

In this paper, we present libMI, an open source multiscale
image library for manipulating WSIs. It is compatible with all
proprietary WSI file formats and can read, write, and modify
extremely large multiscale images at any resolutions. It also
supports both pixel‑wise geometrical and semantic annotations,
e.g., regional boundaries and cancer grading in histopathological
images. Along with the library, we present an open format
called modifiable multiscale image (MMSI) to store large
images based on SQLite with the library to access this format.
Seamlessly working with libMI, the novel format supports
efficient regional modification of extremely large images without
the necessity of updating the entire image or cutting the image
to tiles. The library works as a robust and efficient abstract
layer for the proposed data format, and this is the first efficient
implementation of reading and writing WSIs, thus can be used
to enhance performance of relevant libraries or standards.[14‑16]
Note that the library is not limited to WSIs but also capable to
deal with large images in other domains, such as satellite and
high‑resolution panoramic images. The library and file format
focus on a frequently encountered problem in image analysis,
especially those artificial intelligent (AI) systems of computer
vision in all domains.

MaterIals and Methods

The libMI library
LibMI was designed to read, write, modify, and annotate the
WSI files. It treats each WSI file as a libMI project, which
includes original image, labeling matrix, labeling table, and
meta‑data, as shown in Figure 1. The mentioned objects would
be saved as a folder with relevant files in it to provide portability
and interoperability. Currently, we are using OpenSlide to read
the image data from various proprietary digital slides, and
further, modification can be made to support other large image
formats such as DICOM, while hiding the working details of
complex low‑level systems, such as the organization of the data
structure and the algorithms to process these data from the user.

The library stores all important information in a single JSON
file, which is a lightweight, text‑based, language‑independent
data‑interchange format for the portable representation of
structured data.[17] This file contains all parameters needed to
process the image, as well as image meta‑data which are the
properties of the original WSI file. Most vendors provide WSI
files that contain various properties, such as the number of
down‑sampled layers, available z‑stack layers, and scanning
resolution. LibMI provides public Application Programming
Interface (APIs) to access existing properties and add new
properties, which can be useful when new meta‑data must
be saved.

The labeling matrix is stored in the MMSI open format that
we proposed in this paper and is managed by our underlying
library, which is based on the standardized SQLite schema. The
matrix has the same dimension as the main image, with each
pixel in the matrix describing which region each pixel belongs
to with a unique ID number. Pixels with the same value can
be recognized as being in the same region even though they
may not be connected.

Labeling table contains the definition of each matrix region
which is linked by ID number. Since there could be billions of
different regions, the labeling table is also divided into smaller
sections, compressed by the DEFLATE algorithm, and saved
as blobs in SQLite. The blobs are dynamically created when
needed to save disk space. The possible value in the labeling
table is up to 255 for every region ID.

Intuitively, the proposed mechanism that incorporates MMSI
labeling matrix with labeling table may seem to be redundant.
Nevertheless, it is proposed to provide both efficiency and
flexibility since MMSI matrix is strictly structured for read and
write speed, and labeling table allows changes in the number
of categories and addition in the description of each region.
The combination of the labeling matrix and the labeling table
provides the capability to annotate regions of any shape on the
image and to give each region a corresponding label. Since
the files in libMI projects are all standardized, including only
SQLite and JSON, it is compatible with libraries or tools to
directly access the project’s data without the libMI library.

The modifiable multiscale image file format
Since existing file formats cannot accommodate dynamically
changing and complex data as needed in the WSIs, we propose
MMSI which is an open file format to store extremely large
images. It works with libMI library to store labeling matrices
to support pixel‑wise annotation. It can also store the WSI
files to give high‑efficiency read, write, and modify access of
these images. MMSI stores images as a tile‑based pyramidal
structure, containing several layers with different sizes. The
lowest layer has the same dimension as the original image,
and the following adjacent layer has half of both the width
and height of the previous layer. Every 2 × 2 tiles in one layer
can be directly mapped to a single tile in the upper layer as
depicted in Figure 2a. Each layer is divided into tiles with the
method as shown in Figure 2b. Each single tile is stored as a

J Pathol Inform 2020, 1:26 http://www.jpathinformatics.org/content/11/1/26

Journal of Pathology Informatics 3

blob in SQLite (https://www.sqlite.org/). MMSI can use PNG
or JPG format as the internal compression method, which is
selected by the user.

Currently, the ability of MMSI format to partially modify large
images is only used to make pixel‑wise annotation, which
is the main feature provided by libMI. Actually, this ability
can benefit any process that requires modifications of data in
large images, including general image preprocessing, noise
reduction, image enhancement, and color value correction.

Underlying algorithms of modifiable multiscale image
Forward updating and backward updating
To efficiently read and modify the images, we utilize the concept
of two‑dimensional segment tree and lazy propagation to
minimize the calculation complexity. Each tile in the pyramid
can be treated as a node on the tree, and each node has up to
four children. Reading and modifying the tiles are the same as
making queries and modifications. In this way, we can guarantee
the upper limit of the number of tiles visited in each operation.

Forward updating and backward updating are the two essential
operations in the processing algorithms. The former one means
passing the modification from one node to its children and
resetting the lazy value, while another one means passing
the modification from the node’s children to itself. The time
complexity of both operations is O (1).

Reading and modifying the image
Since WSIs are very large, it is impossible to load the whole
image into the memory, so only parts of the image would

be accessed by the library. In different situations, one may
need to get a thumbnail of the whole image or get detailed
information in a small region. The resolution of region of
interest (ROI) varies significantly in these two cases, but
the actual resolutions the users need are limited by viewing
hardware – computer displays. The concept of pyramid image
is exploited to minimize the amount of data needed to read
from hard disks.

For each reading or modifying operation, two input parameters
are required: A ROI to operate, and the actual resolution
needed. Then, the appropriate downsample ratio (DSR) will
be automatically calculated. Each layer has its own DSR, and
the algorithm selects the preferred layer from them according
to the following criterion: the layer with the highest DSR but
still lower than the one requested by the user. In this way, we
could get the output image with virtually no quality loss and
guarantee the complexity to be minimized.

Reading and modifying arbitrary regions of the labeling matrix
are the two main operations provided by the MMSI processing
library. After selecting the preferred layer, the system starts
from the top layer which has the lowest resolution. Forward
updating is applied to every tile in the top layer. Iterating
through each above the preferred layer, both operations would
have the linear complexity of O (4 n/3). Figure 3 shows the
schematic diagram.

In both operations, forward updating needs to be applied to the
lazy valued tiles before accessing matrix data in the ROI. All
lazy valued tiles which are in the ROI and above the preferred

Figure 1: The libMI project organization. Each project contains three components: (1) Whole‑slide image data which include the original whole‑slide
image file and the labeling table stored in an SQLite file, (2) annotations which include geometrical annotations and pixel‑wise semantic annotation
labeling matrix stored in an modifiable multi‑scale image file, and (3) related data which include the image meta‑data stored in a JSON file

Figure 2: Tiling mechanism of modifiable multiscale image. (a) 2 × 2 tiles in a higher layer can be directly mapped to one tile in the lower layer. (b)
The schematic diagram of tiling method of a layer in the pyramid

ba

J Pathol Inform 2020, 1:26 http://www.jpathinformatics.org/content/11/1/26

Journal of Pathology Informatics4

layer as the colored regions as shown in Figure 3a will be
updated. Then, according to the type of requested operation,
the algorithm will either read image data from the preferred
layer or overwrite image data in the preferred layer.

Modifying operation requires extra steps. The mechanism of
lazy propagation can only guarantee that the modifications
applied to higher layers are passed to lower layers. To update
modifications in the opposite direction, backward updating is
applied to all tiles in the green regions layer by layer from the
bottom to the top after red regions as shown in Figure 3b have
been modified in each modifying operation.

The caching mechanism
The bottleneck between the memory and the SQL database is
caused by intensive compression and read and write operations.
To alleviate the bottleneck, libMI records the times that each
tile has been visited and uses a priority queue to determine
which tile should be removed from cache, according to the
Least Frequently Used Strategy. Size of the cache can be
changed at runtime via libMI API to adjust the balance between
memory occupation and processing speed.

Parallel processing
LibMI supports parallel processing in each operation. Unlike
OpenSlide and Bio‑Formats that require developers to
use multithreads explicitly by themselves, libMI hides all
implementation details from users and allows them to access
the file in a serial manner, as well as gain benefit from a parallel
processing mechanism provided by libMI.

results

Overview
The proposed library, libMI, is capable of manipulating extremely
large images and compatible with all OpenSlide‑compatible
WSI files,[1] regardless of hardware limitations. It supports
instantaneous reading, writing, and modifying image data of
any region in any resolution without being forced to cut image
into tiles or update an entire image and also recording pixel‑wise
geometrical and semantic annotations, such as cancer subtypes or
gradings. It is written in C++ and also officially provides public
standardized programmatic APIs for Python. We analyzed the

upper limit of time complexity in each operation, which will take
no more than 800 ms in normal scenarios when the processing
resolution does not exceed 10 megapixels, which is more than
resolution needed to fill 4K computer displays at 8.3 megapixels.
LibMI could be used on different platforms including Linux,
macOS, and Windows. Along with the libMI library, MMSI is
the open format we proposed which is capable of storing any
kind of large images with any resolution. LibMI and MMSI are
both free and open source. The proposed open data format is built
on other open formats including SQLite for the storage of large
multiscale images and JSON for accompanying information
about the WSI; thus, it can be accessed via not only libMI but
also other tools as well. More information about the guideline
and the openness is at libMI documentation: https://bioai.gitlab.
io/libMI‑docs/.

Performance
The library is tested on an Intel Core i7‑9750H CPU
(2.60 GHz) with 16 GB RAM and 1 TB SSD under Windows
10 Operating System. We select four WSIs from The Cancer
Genome Atlas (TCGA) with different dimensions to show the
performance of MMSI processing different file sizes.[18] Table 1
shows the files used and their sizes, including the original
WSI file, the file after converting to MMSI with JPG and
PNG internal compression method, respectively, and the total
size of all image tiles exported from the WSI saved in PNG
format. It shows that MMSI using JPG compression method is
slightly larger than the original file, while MMSI using PNG
compression method is significantly larger. Therefore, MMSI
using JPG is more suitable to store WSIs for read‑only access
after preprocessing, and MMSI using PNG is more suitable
to store pixel‑wise annotation data as these data are easier
to compress. The time spent to convert a WSI into MMSI is
listed in Table 2. When converting, image data are read and
uncompressed by OpenSlide and then compressed again and
written into MMSI tile by tile.

Figure 4 shows the relationship between the required resolution
and processing time of both the reading and modifying
operations accessing an MMSI file using PNG compression
with a typical WSI dimension (80,000, 80,000). It shows the
performance when running with cache size of 4000 tiles, or

Figure 3: Schematic diagram of a reading or modifying operation. (a) Region of interest in the pyramid structure. (b) Region of interest in the preferred
layer. (c) Tiles in region of interest needed to be accessed in this operation. (d) Tiles in region of interest but irrelevant to this operation

dcba

J Pathol Inform 2020, 1:26 http://www.jpathinformatics.org/content/11/1/26

Journal of Pathology Informatics 5

1 GB of RAM. In normal circumstances where the number
of pixels processed does not exceed 10 megapixels, the
processing time is at most around 800 ms. Note that in some
circumstances, the processing time of reading operations can
exceed that of modifying ones. It is because of the utilization
of lazy propagation so that modifications applied do not take
effect immediately, while the results are still guaranteed to be
correct. In these experiments, reading or modifying regions
are randomly selected, and in real‑world scenarios, the regions
are likely to be continuous,[19] so the cache mechanism will be
utilized to gain even higher performance.

Besides the capability of efficiently modifying WSIs, which
is not supported by any other tools, libMI can also achieve
higher performance when providing read‑only access to
WSIs compared to congeneric software. The library is tested
to perform read‑only tasks on the four WSI files from TCGA,
and the processing time is compared with other two WSI
reading libraries: OpenSlide and Bio‑Formats.[1,6] We randomly
generated 100 reading requests for each WSI file and tested
the speed using libMI to read MMSI files converted from
proprietary files, as well as using OpenSlide and Bio‑Formats
to read these original files. We tested the performance of MMSI
with different compression methods, different cache sizes, and
different number of threads.

The average reading speed for each WSI file is recorded
in Tables 3 and 4. The result shows that MMSI using PNG
is 18.237 times faster than OpenSlide and 32.473 times
faster than Bio‑Formats in average, and MMSI using JPG is
40.621 times faster than OpenSlide and 70.921 times faster
than Bio‑Formats in average, while doing the same reading
job. LibMI and MMSI together have gained significant speed
advantage over congeneric libraries and file formats.

Use Case I: Applying conventional image operations on
whole‑slide images
In medical image processing, thresholding algorithms could
generate a binary image according to a source image and a

given threshold. It is one of the essential operations used to
analyze the image data because it can effectively separate the
foreground from the background. Further, color correction
or normalization is another algorithm that is often applied to
microscopic images to standardize the color representation.
This example uses the Otsu algorithm for thresholding and
histogram matching method for color correction.[20,21] Sample
WSIs come from TCGA,[18] as shown in Figure 5.

For thresholding, the example program iterates through tiles of
the image using libMI library to obtain the intensity distribution
of the image and to calculate the threshold and then iterates
again to apply thresholding to the source image. The resulting
image is stored in the MMSI format, and a thumbnail from a
downsampled layer is obtained through libMI library.

For color correction, the gist is similar. The program first iterates
both the source and target images to obtain the histogram and
then iterates the target image again to apply color correction,
store the result in MMSI format, and get the final thumbnail.

For normal images, these operations would not raise technical
issues. However, for WSI, the operation must be applied to a
small part of an image at a time due to hardware limitations.
With libMI, developers can easily access image data of the
WSIs tile by tile through the API of libMI library without
any preprocessing and conveniently write the result image as
another WSI file for further operations.

Usage Case II: Freehand pixel‑wise annotation
Pixel‑wise reading and writing annotations are one of the
major features proposed by libMI. This allows annotators to
add freehand annotations and image processing algorithms
to perform image segmentation. Figure 6 shows the result of

Table 1: Whole‑slide images files used in performance testing and their sizes in megabytes

ID File name Original MMSI (JPG) MMSI (PNG) Raw PNG
1 TCGA‑BP‑5201‑01Z‑00‑DX1 337 557 7649 7640
2 TCGA‑BP‑4771‑01Z‑00‑DX1 806 966 12,173 12,136
3 TCGA‑B0‑5098‑01Z‑00‑DX1 1034 1346 16,089 15,998
4 TCGA‑BP‑4176‑01Z‑00‑DX1 1174 1496 18,450 18,168
MMSI: Modifiable multiscale image

Table 2: Time spent to convert whole‑slide images into
modifiable multiscale images in seconds (s)

ID File name MMSI (JPG) MMSI (PNG)
1 TCGA‑BP‑5201‑01Z‑00‑DX1 534 664
2 TCGA‑BP‑4771‑01Z‑00‑DX1 753 1036
3 TCGA‑B0‑5098‑01Z‑00‑DX1 1258 1802
4 TCGA‑BP‑4176‑01Z‑00‑DX1 1082 1477
MMSI: Modifiable multiscale image

Figure 4: Processing time of libMI with cache size 16,000. X‑axis is the
requested resolution (megapixels) and Y‑axis is the processing time (ms)

J Pathol Inform 2020, 1:26 http://www.jpathinformatics.org/content/11/1/26

Journal of Pathology Informatics6

two consecutive writing operations which create overlapping
freehand regions. The fact that libMI API allows developers

to access the labeling matrix at any region and resolution
makes pixel‑wise modifications of labeling matrix possible.
Intuitively, the modifications are made at the level where
the annotator is currently viewing, and the modifications
will be passed to other levels with different resolutions
automatically. In the overlapping area of two annotations,
the newer annotations would overwrite the former ones, for
example (a) would be overwritten by the latter one (b) in
Figure 6. This example has demonstrated that the library is able
to automatically choose the proper layer to satisfy the accessing
resolution and pass the modifications between different layers.

Code availability
Both the libMI library and MMSI open format are freely
available at https://gitlab.com/BioAI/libMI under GNU
General Public License v3.0, and the documentation for both
libraries is available at https://bioai. gitlab.io/libMI‑docs/.

Figure 5: Whole‑slide image processed by conventional algorithms
with assistances from libMI. (a and b) Source and result image in
thresholding, (c‑e) source image, target image, and result image of color
correction, respectively

dc

ba

e

Table 3: Average processing speed in megapixels and equivalent megabytes with different cache sizes

WSI ID

Cache

1 2 3 4

PNG JPG PNG JPG PNG JPG PNG JPG
0

MP/s 273.67 288.26 222.50 410.84 242.82 512.50 226.30 496.30
MB/s 1094.70 1153.04 889.99 1643.37 971.28 2050.00 905.20 1985.20

1GB
MP/s 389.45 925.91 569.69 1419.40 740.15 1291.23 534.89 1382.45
MB/s 1557.79 3703.64 2278.75 5677.60 2960.61 5164.92 2139.57 5529.81

2GB
MP/s 534.82 979.34 645.73 1589.59 903.00 1497.12 893.28 1458.06
MB/s 2139.29 3917.34 2582.92 6358.37 3612.00 5988.47 3573.13 5832.23

4GB
MP/s 630.23 1003.07 813.11 1729.14 1074.34 1629.58 1226.28 1608.21
MB/s 2520.91 4012.26 3252.42 6916.58 4297.37 6518.32 4905.10 6432.83

MP/s: Megapixels, MB/s: Megabytes, WSI: Whole‑slide images

Table 4: Average processing speed in megapixels and equivalent megabytes with different thread numbers

Number of threads 1 2 4 8

Method WSI ID MP/s MB/s MP/s MB/s MP/s MB/s MP/s MB/s
MMSI (PNG) 1 120.83 483.33 214.24 856.95 395.04 1580.18 630.23 2520.91

2 212.63 850.53 346.30 1385.22 671.24 2684.94 813.11 3252.42
3 250.97 1003.89 485.30 1941.20 726.84 2907.35 1074.34 4297.37
4 238.58 954.30 365.88 1463.51 660.27 2641.08 1226.28 4905.10

MMSI (JPG) 1 231.51 926.03 368.04 1472.18 872.20 3488.78 1003.07 4012.26
2 337.04 1348.18 688.40 2753.60 1233.98 4935.93 1729.14 6916.58
3 407.96 1631.84 782.38 3129.52 1307.79 5231.14 1629.58 6518.32
4 375.96 1503.84 659.43 2637.72 1393.99 5575.98 1608.21 6432.83

OpenSlide 1 10.81 43.24 20.82 83.28 37.55 150.18 50.51 202.04
2 9.70 38.82 17.69 70.75 30.22 120.88 42.68 170.73
3 11.97 47.88 21.73 86.94 33.92 135.67 46.54 186.16
4 12.22 48.88 17.14 68.57 30.27 121.06 40.76 163.06

Bio‑Formats 1 5.49 21.98 11.49 45.94 19.61 78.45 24.32 97.28
2 4.15 16.60 8.39 33.57 15.74 62.95 21.37 85.48
3 4.22 16.88 7.59 30.38 14.82 59.26 20.83 83.34
4 4.99 19.94 9.25 36.99 16.88 67.54 22.09 88.34

MP/s: Megapixels, MB/s: Megabytes, WSI: Whole‑slide images, MMSI: Modifiable multi‑scale image

J Pathol Inform 2020, 1:26 http://www.jpathinformatics.org/content/11/1/26

Journal of Pathology Informatics 7

dIscussIon

Since there are no strict definitions of extremely large image,
except its dimension, the description of types of image array
which MMSI file format can support should be clarified.
In theory, the dimension of extremely large images can be
indefinitely large; however, different aspects of hardware
limitations which establish a working environment which
software should follow include disk read/write speed,
memory size, graphic‑processing unit processing throughput,
and computer displays. In usual, we consider an image file
larger than 6 GB when uncompressed, which is (40,000,
40,000) dimension with 32‑bit pixels, as an extremely large
image. As an anchor, we suggest consideration of displayable
pixels which will generally reflect the display resolution at a
given displaying cycle (image frame). The current reference
we adopt is 4 K resolution, approved by The International
Telecommunication Union (ITU), which has the processing
resolution around 8.3 megapixels. Another aspect to consider
is image bit‑depth which has industry standard at 8‑bit, 16‑bit,
and 24‑bit per channel. To preserve compatibility with existing
viewing tools and data format when parts of extremely large
image are requested to be viewed, both libMI and MMSI could
store image with higher bit depth at 64‑bit for one pixel, so
the color model can be either grayscale, true‑color with alpha
channels, or other widely used color models, e.g., ARGB, HSV,
and CIE L*a*b*. The production of extremely large images
can be made through two approaches. First, taking several
normal‑sized images and stitching them together such as
those from WSI scanners or aerial imaging. Second, the image
produced from a very high‑resolution image sensor. In either
case, images saved should not only be small but also highly
accessible so that they can be utilized efficiently.

The current version of libMI has achieved decent performance.
We believe that the performance could be improved if the
following limitations are addressed. The first is the reading
and writing bottleneck. The libMI performance relies on fast
disk reading and writing speed, and most of the processing
time was taken by these operations. This problem is currently
being addressed by a caching mechanism in libMI. The

second is the compression time. In the cases that many
sequential compression tasks are needed, the performance
of the library may be affected. This problem is addressed
by parallel processing mechanism in libMI. Finally, the
performance of the library can benefit from better hardware
with superior disk response time and read/write speed. LibMI
uses the PNG lossless compression by default to avoid image
quality deterioration after multiple modifying operations.
Nevertheless, the JPEG lossy compression can also be utilized
if only one‑off modification is required to minimize the WSI
file size.[22]

Previous works in pathology have shown the potentials and
possibilities of WSIs in automatic screening, diagnosis, and
treatment planning of cancer patients.[7,23] The centralized
large‑scale biomedical repositories hosting WSIs such as The
Cancer Genome Atlas Project (TCGA) and Genotype‑Tissue
Expression Project (GTEx) have emerged,[18,24] and the
performance of the repository distributing images to clients
could be improved by letting viewers only access parts of
WSIs without transferring entire files. Furthermore, efforts
to tie nonimaging information in digital images have been
made in numerous competitions, e.g., CAMELYON, TUPAC,
and ICIAR.[25‑27] In those competitions, evaluations and
developments of new and existing algorithms for automatic
detection of cancer metastases in hematoxylin and eosin‑stained
WSIs were proposed. Not losing the medical meta‑data along
the way could benefit further analysis in the future.

LibMI and MMSI may be implemented in all computational
environments: Cloud servers and local machines. Currently,
there are a number of WSI‑compatible tools available for
utilization including OpenHI, ASAP, QuPath, Cytomine,
OpenSeadragon, and SlideJ.[12,13,28‑31] These frameworks are
successful implementations of computational pathology to
support visualization, annotation, and further pathological
analysis. Unfortunately, many of them were being forced to
only support proprietary WSI file formats since the free and
open ones are not available. Extending the read/write engine
of the mentioned framework to include libMI would allow the
image, annotations, and associated clinical data to be saved in
a single unified file. Pathological e‑learning resource database
such as the Stanford Tissue Microarray Database and the
“digital lung pathology” could be upgraded by adopting libMI
as well.[32,33] This would allow them to overcome the current
shortcomings such as fixed magnification and limited number
of views. In implementation, there are no limits to how the
proposed library and file format could be utilized.

LibMI also helps to save time and disk space in machine
learning tasks which include WSIs. The conventional
preprocessing method of WSI is to extract patches – fixed
size small image tiles – which has the same dimensions as the
input of analysis models; then, the annotation will be generated
according to the tiles, e.g., image segmentation. This results
in redundant disk space consumption. With the decent reading
speed, libMI enables these machine learning algorithms to read

Figure 6: The procedure of doing freehand pixel‑wise annotation in libMI.
The test program writes two freehand annotations (a and b) to two different
lower layers in the modifiable multiscale image pyramidal structure and
read the result (c) from a higher layer (DSR is downsample ratio)

c

b

a

J Pathol Inform 2020, 1:26 http://www.jpathinformatics.org/content/11/1/26

Journal of Pathology Informatics8

image data from the WSIs directly during training, as well as
pixel‑wise annotation data. The functionality of pixel‑wise
annotation can also avoid the time consumed on converting
soft overlay annotations. The only information that needs to
be stored is the position of each patch, which is rather small
compared to image data.

conclusIons

Currently, no tools are available for some essential operations
in WSIs, especially to partially modify WSI in a subregion at
different accessing levels. The combination of libMI library
and MMSI file format resolves the problems since they
provide simplified access to the complex file organization such
as multiscale image and accompanying data. Furthermore,
since the libMI project organization and MMSI file format
are standardized and open, it can be accessed by anyone with
other tools. To our knowledge, no open format is currently
in use and can support efficient storage and modification of
extremely large images. Therefore, libMI encourages the
sharing of intermediate and final analysis results. In addition,
libMI can significantly reduce the time complexity of large
image modifications because of partial file modification and
efficient updating algorithms, unlike other open image file
formats such as BigTIFF, which requires the entire file to
be rewritten. The performance and efficiency of libMI are
further enhanced by characteristics of SQLite, compression
algorithm, cache mechanism, and parallel processing, resulting
in higher reading efficiency compared to congeneric software
or libraries. With the mentioned advantages, libMI enables
easier sharing, modification, and writing of large image data.

Since libMI is compatible with existing proprietary WSI
formats, it can be integrated to existing systems without
compatibility problems. Building analysis pipelines on libMI
should be more straightforward since there is no need for
complex preprocessing which transforms large images into
smaller patches and keeping them in separated files. LibMI
can promote the development of automated pipelines and
the application of artificial intelligence in various domains,
especially in pathology, since analyzing histopathological
images is the key to assist automated diagnosis.

Financial support and sponsorship
This work has been supported by The National Natural Science
Foundation of China (61772409); The National Key Research
and Development Program of China (2018YFC0910404);
The consulting research project of the Chinese Academy
of Engineering (The Online and Offline Mixed Educational
Service System for “The Belt and Road” Training in MOOC
China); Project of China Knowledge Centre for Engineering
Science and Technology; The innovation team from the
Ministry of Education (IRT_17R86); and the Innovative
Research Group of the National Natural Science Foundation
of China (61721002).

Conflicts of interest
There are no conflicts of interest.

references
1. Goode A, Gilbert B, Harkes J, Jukic D, Satyanarayanan M. OpenSlide:

A vendor‑neutral software foundation for digital pathology. J Pathol
Inform 2013;4:27.

2. Boyce BF. An update on the validation of whole slide imaging systems
following FDA approval of a system for a routine pathology diagnostic
service in the United States. Biotech Histochem 2017;92:381‑9.

3. Evans AJ, Bauer TW, Bui MM, Cornish TC, Duncan H, Glassy EF, et al.
US Food and Drug Administration approval of whole slide imaging for
primary diagnosis: A key milestone is reached and new questions are
raised. Arch Pathol Lab Med 2018;142:1383‑7.

4. Singh R, Chubb L, Pantanowitz L, Parwani A. Standardization in digital
pathology: Supplement 145 of the DICOM standards. J Pathol Inform
2011;2:23.

5. Tabata K, Mori I, Sasaki T, Itoh T, Shiraishi T, Yoshimi N, et al. Whole‐
slide imaging at primary pathological diagnosis: Validation of whole‐
slide imaging‐based primary pathological diagnosis at twelve Japanese
academic institutes. Pathol Int 2017;67:547‑54.

6. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, et al.
Metadata matters: Access to image data in the real world. J Cell Biol
2010;189:777‑82.

7. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M,
Fenyö D, et al. Classification and mutation prediction from non‑small
cell lung cancer histopathology images using deep learning. Nat Med
2018;24:1559‑67.

8. Cruz‑Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S,
Shih NN, et al. Accurate and reproducible invasive breast cancer
detection in whole‑slide images: A deep learning approach for
quantifying tumor extent. Sci Rep 2017;7:46450.

9. Yu KH, Zhang C, Berry GJ, Altman RB, Ré C, Rubin DL, et al.
Predicting non‑small cell lung cancer prognosis by fully automated
microscopic pathology image features. Nat Commun 2016;7:12474.

10. Bradski, G. The OpenCV library. Dobbs J Software Tools
2000;4:2236121.

11. van der Walt S, Schönberger JL, Nunez‑Iglesias J, Boulogne F,
Warner JD, Yager N, et al. scikit‑image: Image processing in Python.
PeerJ 2014;2:e453.

12. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG,
Dunne PD, et al. QuPath: Open source software for digital pathology
image analysis. Sci Rep 2017;7:16878.

13. Litjens G. Automated Slide Analysis Platform (ASAP); 2015. Available
from: https://github.com/computationalpathologygroup/ASAP. [Last
accessed on 2019 Jul 20].

14. Marée R, Rollus L, Stévens B, Hoyoux R, Louppe G, Vandaele R, et al.
Collaborative analysis of multi‑gigapixel imaging data using Cytomine.
Bioinformatics 2016;32:1395‑401.

15. Herrmann MD, Clunie DA, Fedorov A, Doyle SW, Pieper S, Klepeis V,
et al. Implementing the DICOM standard for digital pathology. J Pathol
Inform 2018;9:37.

16. Marques Godinho T, Lebre R, Silva LB, Costa C. An efficient
architecture to support digital pathology in standard medical imaging
repositories. J Biomed Inform 2017;71:190‑7.

17. Crockford D. JSON: The fat‑free alternative to XML; 2006. Available
from: http://www.json.org/fatfree.html. [Last accessed on 2019 Jul 20].

18. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome
Atlas (TCGA): An immeasurable source of knowledge. Contemp
Oncol (Pozn) 2015;19:A68‑77.

19. Walkowski S, Lundin M, Szymas J, Lundin J. Students’ performance
during practical examination on whole slide images using view path
tracking. Diagn Pathol 2014;9:208.

20. Cheriet M, Said JN, Suen CY. A recursive thresholding technique for
image segmentation. IEEE Trans Image Process 1998;7:918‑21.

21. Nyúl LG, Udupa JK, Zhang X. New variants of a method of MRI scale
standardization. IEEE Trans Med Imaging 2000;19:143‑50.

22. Zarella MD, Bowman D, Aeffner F, Farahani N, Xthona A,
Absar SF, et al. A practical guide to whole slide imaging: A white
paper from the digital pathology association. Arch Pathol Lab Med
2019;143:222‑34.

23. Signaevsky M, Prastawa M, Farrell K, Tabish N, Baldwin E, Han N,

J Pathol Inform 2020, 1:26 http://www.jpathinformatics.org/content/11/1/26

Journal of Pathology Informatics 9

et al. Artificial intelligence in neuropathology: Deep learning‑based
assessment of tauopathy. Lab Invest 2019;99:1019‑29.

24. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The
genotype‑tissue expression (GTEx) project. Nat Genet 2013;45:580‑5.

25. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B,
Karssemeijer N, Litjens G, et al. Diagnostic assessment of deep learning
algorithms for detection of lymph node metastases in women with breast
cancer. JAMA 2017;318:2199‑210.

26. Veta M, Heng YJ, Stathonikos N, Bejnordi BE, Beca F, Wollmann T,
et al. Predicting breast tumor proliferation from whole‑slide images:
The TUPAC16 challenge. Med Image Anal 2019;54:111‑21.

27. Aresta G, Araújo T, Kwok S, Chennamsetty SS, Safwan M, Alex V,
et al. Bach: Grand challenge on breast cancer histology images. Med
Image Anal 2019;56:122‑39.

28. Puttapirat P, Zhang H, Lian Y, Wang C, Zhang X, Yao L, et al. OpenHI‑
An open source framework for annotating histopathological image.

BIBM 2018 IEEE International Conference on Bioinformatics and
Biomedicine; 2018. p. 1076‑82.

29. Marée R, Rollus L, Stévens B, Hoyoux R, Louppe G, Vandaele R, et al.
Cytomine: An open‑source software for collaborative analysis of whole‑
slide images. Diagn Pathol 2016;1:13.

30. OpenSeadragon Project; 2013. Available from: https://github.com/
openseadragon/openseadragon. [Last accessed on 2020 May 07].

31. Della Mea V, Baroni GL, Pilutti D, Di Loreto C. SlideJ: An
ImageJ plugin for automated processing of whole slide images.
PLoS One 2017;12:e0180540.

32. Marinelli RJ, Montgomery K, Liu CL, Shah NH, Prapong W,
Nitzberg M, et al. The Stanford tissue microarray database. Nucleic
Acids Res 2008;36:D871‑7.

33. Kayser K, Kayser G, Radziszowski D, Oehmann A. From telepathology
to virtual pathology institution: The new world of digital pathology.
Rom J Morphol Embryol 1999;45:3‑9.

	LibMI: An Open Source Library for Efficient Histopathological Image Processing
	Introduction
	Materials and Methods
	The libMI library
	The modifiable multiscale image file format
	Underlying algorithms of modifiable multiscale image
	Reading and modifying the image
	The caching mechanism
	Parallel processing

	Results
	Overview
	Performance
	Use Case I: Applying conventional image operations on whole‑slide images
	Usage Case II: Freehand pixel‑wise annotation
	Code availability

	Discussion
	Conclusions
	Financial support and sponsorship
	Conflicts of interest
	References

